Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_1_a0, author = {Borodin, Oleg V. and Ivanova, Anna O.}, title = {All {Tight} {Descriptions} of {3-Stars} in {3-Polytopes} with {Girth} 5}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {5--12}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a0/} }
TY - JOUR AU - Borodin, Oleg V. AU - Ivanova, Anna O. TI - All Tight Descriptions of 3-Stars in 3-Polytopes with Girth 5 JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 5 EP - 12 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a0/ LA - en ID - DMGT_2017_37_1_a0 ER -
Borodin, Oleg V.; Ivanova, Anna O. All Tight Descriptions of 3-Stars in 3-Polytopes with Girth 5. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 1, pp. 5-12. http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a0/
[1] O.V. Borodin, Solution of Kotzig’s and Grünbaum’s problems on the separability of a cycle in a planar graph, Mat. Zametki 46 (1989) 9–12, in Russian.
[2] O.V. Borodin, Structural properties of planar maps with the minimal degree 5, Math. Nachr. 158 (1992) 109–117. doi:10.1002/mana.19921580108
[3] O.V. Borodin and D. Sanders, On light edges and triangles in planar graphs of minimal degree five, Math. Nachr. 170 (1994) 19–24. doi:10.1002/mana.19941700103
[4] O.V. Borodin and D.R. Woodall, Short cycles of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 18 (1998) 159–164. doi:0.7151/dmgt.1071
[5] O.V. Borodin and A.O. Ivanova, Describing 4 -stars at 5 -vertices in normal plane maps with minimum degree 5, Discrete Math. 313 (2013) 1710–1714. doi:10.1016/j.disc.2013.04.025
[6] O.V. Borodin, A.O. Ivanova and A.V. Kostochka, Every 3 -polytope with minimum degree 5 has a 6 -cycle with maximum degree at most 11, Discrete Math. 315–316 (2014) 128–134. doi:10.1016/j.disc.2013.10.021
[7] O.V. Borodin, A.O. Ivanova and D.R. Woodall, Light C4 and C5 in 3 -polytopes with minimum degree 5, Discrete Math. 334 (2014) 63–69. doi:10.1016/j.disc.2014.06.024
[8] O.V. Borodin, A.O. Ivanova and T.R. Jensen, 5 -stars of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 34 (2014) 539–546. doi:10.7151/dmgt.1748
[9] O.V. Borodin and A.O. Ivanova, Every 3 -polytope with minimum degree 5 has a 7 -cycle with maximum degree at most 15, Sibirsk. Mat. Zh. 56 (2015) 775–789, in Russian.
[10] B. Ferencová and T. Madaras, On the structure of polyhedral graphs with prescribed edge and dual edge weight, Acta Univ. M. Belii Ser. Math. 12 (2005) 13–18.
[11] B. Ferencová and T. Madaras, Light graph in families of polyhedral graphs with prescribed minimum degree, face size, edge and dual edge weight, Discrete Math. 310 (2010) 1661–1675. doi:10.1016/j.disc.2009.11.027
[12] Ph. Franklin, The four-color problem, Amer. J. Math. 44 (1922) 225–236. doi:10.2307/2370527
[13] P. Hudák and T. Madaras, On doubly light triangles in plane graphs, Discrete Math. 313 (2013) 1978–1988. doi:10.1016/j.disc.2012.11.018
[14] S. Jendrol’ and T. Madaras, On light subgraphs in plane graphs with minimum degree five, Discuss. Math. Graph Theory 16 (1996) 207–217. doi:10.7151/dmgt.1035
[15] S. Jendrol’, T. Madaras, R. Soták and Zs. Tuza, On light cycles in plane triangulations, Discrete Math. 197–198 (1999) 453–467. doi:10.1016/S0012-365X(98)00254-4
[16] S. Jendrol’ and H.-J. Voss, Light subgraphs of graphs embedded in the plane—a survey, Discrete Math. 313 (2013) 406–421. doi:10.1016/j.disc.2012.11.007
[17] H. Lebesgue, Quelques conséquences simples de la formule d’Euler, J. Math. Pures Appl. 19 (1940) 27–43.
[18] T. Madaras and R. Soták, The 10-cycle C10 is light in the family of all plane triangulations with minimum degree five, Tatra Mt. Math. Publ. 18 (1999) 35–56.
[19] T. Madaras, On the structure of plane graphs of minimum face size 5, Discuss. Math. Graph Theory 24 (2004) 403–411. doi:10.7151/dmgt.1239
[20] T. Madaras, Two variations of Franklin’s theorem, Tatra Mt. Math. Publ. 36 (2007) 61–70.
[21] T. Madaras, R. Škrekovski and H.-J. Voss, The 7-cycle C7 is light in the family of planar graphs with minimum degree 5, Discrete Math. 307 (2007) 1430–1435. doi:10.1016/j.disc.2005.11.080
[22] E. Steinitz, Polyeder und Raumeinteilungen, Enzykl. Math. Wiss. 3 (1922) 1–139.
[23] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413–426. doi:10.1007/BF01444968