Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_4_a9, author = {Aksenov, Valerii A. and Borodin, Oleg V. and Ivanova, Anna O.}, title = {An {Extension} of {Kotzig{\textquoteright}s} {Theorem}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {889--897}, publisher = {mathdoc}, volume = {36}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a9/} }
TY - JOUR AU - Aksenov, Valerii A. AU - Borodin, Oleg V. AU - Ivanova, Anna O. TI - An Extension of Kotzig’s Theorem JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 889 EP - 897 VL - 36 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a9/ LA - en ID - DMGT_2016_36_4_a9 ER -
Aksenov, Valerii A.; Borodin, Oleg V.; Ivanova, Anna O. An Extension of Kotzig’s Theorem. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 889-897. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a9/
[1] V.A. Aksenov, O.V. Borodin, L.S. Mel’nikov, G. Sabidussi, M. Stiebitz and B. Toft, Deeply asymmetric planar graphs, J. Combin. Theory Ser. B 95 (2005) 68-78. doi: 10.1016/j.jctb.2005.03.002
[2] S.V. Avgustinovich and O.V. Borodin, Neighborhoods of edges in normal maps, Diskretn. Anal. Issled. Oper. 2 (1995) 3-9, in Russian.
[3] O.V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989) 180-185.
[4] O.V. Borodin, Joint generalization of the theorems of Lebesgue and Kotzig on the combinatorics of planar maps, Diskret. Mat. 3 (1991) 24-27, in Russian.
[5] O.V. Borodin, Joint extension of two theorems of Kotzig on 3-polytopes, Combinatorica 13 (1993) 121-125. doi: 10.1007/BF01202794
[6] O.V. Borodin, The structure of neighborhoods of an edge in planar graphs and the simultaneous coloring of vertices, edges and faces, Mat. Zametki 53 (1993) 35-47, in Russian.
[7] O.V. Borodin and D. Sanders, On light edges and triangles in planar graphs of minimum degree five, Math. Nachr. 170 (1994) 19-24. doi: 10.1002/mana.19941700103
[8] O.V. Borodin, Simultaneous coloring of edges and faces of plane graphs, Discrete Math. 128 (1994) 21-33. doi: 10.1016/0012-365X(94)90101-5
[9] O.V. Borodin, Structural theorem on plane graphs with application to the entire coloring, J. Graph Theory 23 (1996) 233-239. doi: 10.1002/(SICI)1097-0118(199611)23:3h233::AID-JGT3i3.0.CO;2-T
[10] O.V. Borodin, More about the weight of edges in planar graphs, Tatra Mt. Math. Publ. 9 (1996) 11-14.
[11] O.V. Borodin, A.V. Kostochka and D.R. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory Ser. B 71 (1997) 184-204. doi: 10.1006/jctb.1997.1780
[12] O.V. Borodin, A.O. Ivanova, A.V. Kostochka and N.N. Sheikh, Minimax degrees of quasiplanar graphs with no short cycles other than triangles, Taiwanese J. Math. 12 (2008) 873-886.
[13] O.V. Borodin, A.V. Kostochka, N.N. Sheikh and G. Yu, M-degrees of quadranglefree planar graphs, J. Graph Theory 60 (2009) 80-85. doi: 10.1002/jgt.20346
[14] O.V. Borodin, Colorings of plane graphs: A survey, Discrete Math. 313 (2013) 517-539. doi: 10.1016/j.disc.2012.11.011
[15] O.V. Borodin and A.O. Ivanova, Low edges in 3-polytopes, DiscreteMath. 338 (2015) 2234-2241. doi: 10.1016/j.disc.2015.05.018
[16] O.V. Borodin and A.O. Ivanova, The vertex-face weight of edges in 3-polytopes, Sibirsk. Mat. Zh. 56 (2015) 338-350, in Russian.
[17] R. Cole, L. Kowalik and R. Škrekovski, A generalization of Kotzig’s theorem and its application, SIAM J. Discrete Math. 21 (2007) 93-106. doi: 10.1137/050646196
[18] Z. Dvořák and R. Škrekovski, A theorem about contractible and light edge, SIAM J. Discrete Math. 20 (2006) 55-61. doi: 10.1137/05062189X
[19] B. Ferencová and T. Madaras, Light graphs in families of polyhedral graphs with prescribed minimum degree, face size, edge and dual edge weight, Discrete Math. 310 (2010) 1661-1675. doi: 10.1016/j.disc.2009.11.027
[20] Ph. Franklin, The four color problem, Amer. J. Math. 44 (1922) 225-236. doi: 10.2307/2370527
[21] B. Grünbaum, New views on some old questions of combinatorial geometry, in: Proc. Colloq. Int. sulle Theorie Combinatorie, Rome, 1973, Vol. 1 (Accad. Naz. dei Lincei, 1976) 451-468.
[22] P. Hudák and T. Madaras, On doubly light triangles in plane graphs, Discrete Math. 313 (2013) 1978-1988. doi: 10.1016/j.disc.2012.11.018
[23] S. Jendrol’ and T. Madaras, On light subgraphs in plane graphs of minimum degree five, Discuss. Math. Graph Theory 16 (1996) 207-217. doi: 10.7151/dmgt.1035
[24] S. Jendrol’ and M. Maceková, Describing short paths in plane graphs of girth at least 5, Discrete Math. 338 (2015) 149-158. doi: 10.1016/j.disc.2014.09.014
[25] S. Jendrol’, M. Maceková and R. Soták, Note on 3-paths in plane graphs of girth 4, Discrete Math. 338 (2015) 1643-1648. doi: 10.1016/j.disc.2015.04.011
[26] S. Jendrol’ and H.-J. Voss, Light subgraphs of graphs embedded in the plane - A survey, Discrete Math. 313 (2013) 406-421. doi: 10.1016/j.disc.2012.11.007
[27] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.-Fyz. Čas. (Math. Slovaca) 5 (1955) 101-113, in Slovak.
[28] A. Kotzig, From the theory of Eulerian polyhedrons, Mat.-Fyz. Čas. (Math. Slovaca) 13 (1963) 20-31, in Russian.
[29] H. Lebesgue, Quelques conséquences simples de la formule d’Euler, J. Math. Pures Appl. (9) 19 (1940) 27-43.
[30] T. Madaras and R. Škrekovski, Heavy paths, light stars, and big melons, Discrete Math. 286 (2004) 115-131. doi: 10.1016/j.disc.2003.11.052
[31] J. Nešetřil, A. Raspaud and E. Sopena, Colorings and girth of oriented planar graphs, Discrete Math. 165/166 (1997) 519-530. doi: 10.1016/S0012-365X(96)00198-7
[32] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426. doi: 10.1007/BF01444968