Sharp Upper Bounds for Generalized Edge-Connectivity of Product Graphs
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 833-843

Voir la notice de l'article provenant de la source Library of Science

The generalized k-connectivity κ_k (G) of a graph G was introduced by Hager in 1985. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized k-edge-connectivity which is defined as λ k(G) = min{λ (S) : S ⊆ V (G) and |S| = k }, where λ(S) denote the maximum number 𝓁 of pairwise edge-disjoint trees T_1, T_2, . . ., T_𝓁 in G such that S ⊆ V ( T_i ) for 1 ≤ i ≤𝓁. In this paper, we study the generalized edge- connectivity of product graphs and obtain sharp upper bounds for the generalized 3-edge-connectivity of Cartesian product graphs and strong product graphs. Among our results, some special cases are also discussed.
Keywords: generalized edge-connectivity, Cartesian product, strong product, lexicographic product
@article{DMGT_2016_36_4_a4,
     author = {Sun, Yuefang},
     title = {Sharp {Upper} {Bounds} for {Generalized} {Edge-Connectivity} of {Product} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {833--843},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a4/}
}
TY  - JOUR
AU  - Sun, Yuefang
TI  - Sharp Upper Bounds for Generalized Edge-Connectivity of Product Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 833
EP  - 843
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a4/
LA  - en
ID  - DMGT_2016_36_4_a4
ER  - 
%0 Journal Article
%A Sun, Yuefang
%T Sharp Upper Bounds for Generalized Edge-Connectivity of Product Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 833-843
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a4/
%G en
%F DMGT_2016_36_4_a4
Sun, Yuefang. Sharp Upper Bounds for Generalized Edge-Connectivity of Product Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 833-843. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a4/