Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_4_a20, author = {Kuziak, Dorota and Yero, Ismael G. and Rodr{\'\i}guez-Vel\'azquez, Juan A.}, title = {Closed {Formulae} for the {Strong} {Metric} {Dimension} of {Lexicographic} {Product} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1051--1064}, publisher = {mathdoc}, volume = {36}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a20/} }
TY - JOUR AU - Kuziak, Dorota AU - Yero, Ismael G. AU - Rodríguez-Velázquez, Juan A. TI - Closed Formulae for the Strong Metric Dimension of Lexicographic Product Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 1051 EP - 1064 VL - 36 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a20/ LA - en ID - DMGT_2016_36_4_a20 ER -
%0 Journal Article %A Kuziak, Dorota %A Yero, Ismael G. %A Rodríguez-Velázquez, Juan A. %T Closed Formulae for the Strong Metric Dimension of Lexicographic Product Graphs %J Discussiones Mathematicae. Graph Theory %D 2016 %P 1051-1064 %V 36 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a20/ %G en %F DMGT_2016_36_4_a20
Kuziak, Dorota; Yero, Ismael G.; Rodríguez-Velázquez, Juan A. Closed Formulae for the Strong Metric Dimension of Lexicographic Product Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 1051-1064. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a20/
[1] D. Geller and S. Stahl, The chromatic number and other functions of the lexicographic product, J. Combin. Theory Ser. B 19 (1975) 87-95. doi: 10.1016/0095-8956(75)90076-3
[2] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, 2nd Ed. (CRC Press, Boca Raton, 2011).
[3] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191-195.
[4] J. Kratica, V. Kovačević-Vujčić, M. Čangalović and M. Stojanović, Minimal doubly resolving sets and the strong metric dimension of some convex polytopes, Appl. Math. Comput. 218 (2012) 9790-9801. doi: 10.1016/j.amc.2012.03.047
[5] J. Kratica, V. Kovačević-Vujčić and M. Čangalović, Computing strong metric dimension of some special classes of graphs by genetic algorithms, Yugosl. J. Oper. Res. 18 (2008) 143-151. doi: 10.2298/YJOR0802143K
[6] J. Kratica, V. Kovačević-Vujčić, M. Čangalović and N. Mladenović, Strong metric dimension: A survey, Yugosl. J. Oper. Res. 24 (2014) 187-198. doi: 10.2298/YJOR130520042K
[7] D. Kuziak, I.G. Yero and J.A. Rodríguez-Velázquez, On the strong metric dimension of corona product graphs and join graphs, Discrete Appl. Math. 161 (2013) 1022-1027. doi: 10.1016/j.dam.2012.10.009
[8] D. Kuziak, I.G. Yero and J.A. Rodríguez-Velázquez, Strong metric dimension of rooted product graphs, Int. J. Comput. Math. 93 (2016) 1265-1280. doi: 10.1080/00207160.2015.1061656
[9] D. Kuziak, I.G. Yero and J.A. Rodríguez-Velázquez, Erratum to “On the strong metric dimension of the strong products of graphs”, Open Math. 13 (2015) 209-210. doi: 10.1515/math-2015-0020
[10] D. Kuziak, I.G. Yero and J.A. Rodríguez-Velázquez, On the strong metric dimension of the strong products of graphs, Open Math. 13 (2015) 64-74. doi: 10.1515/math-2015-0007
[11] T.R.May and O.R. Oellermann, The strong dimension of distance-hereditary graphs, J. Combin. Math. Combin. Comput. 76 (2011) 59-73.
[12] N. Mladenović, J. Kratica, V. Kovačević-Vujčić and M. Čangalović, Variable neighborhood search for the strong metric dimension problem, Electron. Notes Discrete Math. 39 (2012) 51-57. doi: 10.1016/j.endm.2012.10.008
[13] O.R. Oellermann and J. Peters-Fransen, The strong metric dimension of graphs and digraphs, Discrete Appl. Math. 155 (2007) 356-364. doi: 10.1016/j.dam.2006.06.009
[14] J.A. Rodríguez-Velázquez, I.G. Yero, D. Kuziak and O.R. Oellermann, On the strong metric dimension of Cartesian and direct products of graphs, Discrete Math. 335 (2014) 8-19. doi: 10.1016/j.disc.2014.06.023
[15] A. Sebő and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29 (2004) 383-393. doi: 10.1287/moor.1030.0070
[16] P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975) 549-559.
[17] E. Yi, On strong metric dimension of graphs and their complements, Acta Math. Sin. (Engl. Ser.) 29 (2013) 1479-1492. doi: 10.1007/s10114-013-2365-z