On the Edge-Hyper-Hamiltonian Laceability of Balanced Hypercubes
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 805-817

Voir la notice de l'article provenant de la source Library of Science

The balanced hypercube BHn, defined by Wu and Huang, is a variant of the hypercube network Qn, and has been proved to have better properties than Qn with the same number of links and processors. For a bipartite graph G = (V0 ∪ V1,E), we say G is edge-hyper-Hamiltonian laceable if it is Hamiltonian laceable, and for any vertex v ∈ Vi, i ∈ 0, 1, any edge e ∈ E(G − v), there is a Hamiltonian path containing e in G − v between any two vertices of V1−i. In this paper, we prove that BHn is edge-hyper- Hamiltonian laceable.
Keywords: balanced hypercubes, hyper-Hamiltonian laceability, edge- hyper-Hamiltonian laceability
@article{DMGT_2016_36_4_a2,
     author = {Cao, Jianxiang and Shi, Minyong and Feng, Lihua},
     title = {On the {Edge-Hyper-Hamiltonian} {Laceability} of {Balanced} {Hypercubes}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {805--817},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a2/}
}
TY  - JOUR
AU  - Cao, Jianxiang
AU  - Shi, Minyong
AU  - Feng, Lihua
TI  - On the Edge-Hyper-Hamiltonian Laceability of Balanced Hypercubes
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 805
EP  - 817
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a2/
LA  - en
ID  - DMGT_2016_36_4_a2
ER  - 
%0 Journal Article
%A Cao, Jianxiang
%A Shi, Minyong
%A Feng, Lihua
%T On the Edge-Hyper-Hamiltonian Laceability of Balanced Hypercubes
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 805-817
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a2/
%G en
%F DMGT_2016_36_4_a2
Cao, Jianxiang; Shi, Minyong; Feng, Lihua. On the Edge-Hyper-Hamiltonian Laceability of Balanced Hypercubes. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 805-817. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a2/