On the Edge-Hyper-Hamiltonian Laceability of Balanced Hypercubes
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 805-817.

Voir la notice de l'article provenant de la source Library of Science

The balanced hypercube BHn, defined by Wu and Huang, is a variant of the hypercube network Qn, and has been proved to have better properties than Qn with the same number of links and processors. For a bipartite graph G = (V0 ∪ V1,E), we say G is edge-hyper-Hamiltonian laceable if it is Hamiltonian laceable, and for any vertex v ∈ Vi, i ∈ 0, 1, any edge e ∈ E(G − v), there is a Hamiltonian path containing e in G − v between any two vertices of V1−i. In this paper, we prove that BHn is edge-hyper- Hamiltonian laceable.
Keywords: balanced hypercubes, hyper-Hamiltonian laceability, edge- hyper-Hamiltonian laceability
@article{DMGT_2016_36_4_a2,
     author = {Cao, Jianxiang and Shi, Minyong and Feng, Lihua},
     title = {On the {Edge-Hyper-Hamiltonian} {Laceability} of {Balanced} {Hypercubes}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {805--817},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a2/}
}
TY  - JOUR
AU  - Cao, Jianxiang
AU  - Shi, Minyong
AU  - Feng, Lihua
TI  - On the Edge-Hyper-Hamiltonian Laceability of Balanced Hypercubes
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 805
EP  - 817
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a2/
LA  - en
ID  - DMGT_2016_36_4_a2
ER  - 
%0 Journal Article
%A Cao, Jianxiang
%A Shi, Minyong
%A Feng, Lihua
%T On the Edge-Hyper-Hamiltonian Laceability of Balanced Hypercubes
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 805-817
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a2/
%G en
%F DMGT_2016_36_4_a2
Cao, Jianxiang; Shi, Minyong; Feng, Lihua. On the Edge-Hyper-Hamiltonian Laceability of Balanced Hypercubes. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 805-817. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a2/

[1] J.A. Bondy and and U.S.R. Murty, Graph Theory with Applications (Macmillan Press, London, 1976). doi: 10.1007/978-1-349-03521-2

[2] R.X. Hao, R. Zhang, Y.Q. Feng and J.X. Zhou, Hamiltonian cycle embedding for fault tolerance in balanced hypercubes, Appl. Math. Comput. 244 (2014) 447-456. doi: 10.1016/j.amc.2014.07.015

[3] S.Y. Hsieh, G.H. Chen and C.W. Ho, Hamiltonian-laceability of star graphs, Net- works 36 (2000) 225-232. doi: 10.1002/1097-0037(200012)36:4h225::AID-NET3i3.0.CO;2-G

[4] K. Huang and J. Wu, Area efficient layout of balanced hypercubes, International Journal of High Speed Electronics and System 6 (1995) 631-646. doi: 10.1142/S0129156495000237

[5] K. Huang and J.Wu, Balanced hypercubes, in: Proceedings of the 1992 International Conference on Parallel Processing 1 (CRC Press, 1992) 153-159.

[6] M. Lewinter and W. Widulski, Hyper-Hamilton laceable and caterpillar-spannable product graphs, Comput. Math. Appl. 34 (1997) 99-104. doi: 10.1016/S0898-1221(97)00223-X

[7] H.Z. Lv and H.P. Zhang, Hyper-Hamiltonian laceability of balanced hypercubes, Jour- nal of Supercomputing 68 (2014) 302-314. doi: 10.1007/s11227-013-1040-6

[8] H.Z. Lv, X. Li and H.P. Zhang, Matching preclusion for balanced hypercube, Theoret. Comput. Sci. 465 (2012) 10-20. doi: 10.1016/j.tcs.2012.09.020

[9] G.J. Simmons, Almost all n-dimensional rectangular lattices are Hamiltonian lace- able, in: Proceedings of the 9th Southeastern Conf. on Combinatorics Graph Theory and Computing (Boca Raton, Fla., 1978) 103-108.

[10] D.B. West, Introduction to Graph Theory (Prentice Hall, 2001).

[11] J. Wu and K. Huang, The Balanced Hypercube: A cube-based system for fault-tole- rant applications, IEEE Trans. Comput. 46 (1997) 484-490. doi: 10.1109/12.588063

[12] J. Xu, Topological Structure and Analysis of Interconnection Networks (Kluwer Academic Publishers, Dordrecht, 2001). doi: 10.1007/978-1-4757-3387-7

[13] M. Xu, X.D. Hu and J.M. Xu, Edge-pancyclicity and Hamiltonian laceability of balanced hypercubes, Appl. Math. Comput. 189 (2007) 1393-1401. doi: 10.1016/j.amc.2006.12.036

[14] M.C. Yang, Bipanconnectivity of balanced hypercubes, Comput. Math. Appl. 60 (2010) 1859-1867. doi: 10.1016/j.camwa.2010.07.016

[15] J.X. Zhou, Z.L. Wu, S.C. Yang and K.W. Yuan, Symmetric property and reliability of balanced hypercube, IEEE Trans. Comput. 64 (2015) 876-881. doi: 10.1109/TC.2014.2304391