Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_4_a2, author = {Cao, Jianxiang and Shi, Minyong and Feng, Lihua}, title = {On the {Edge-Hyper-Hamiltonian} {Laceability} of {Balanced} {Hypercubes}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {805--817}, publisher = {mathdoc}, volume = {36}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a2/} }
TY - JOUR AU - Cao, Jianxiang AU - Shi, Minyong AU - Feng, Lihua TI - On the Edge-Hyper-Hamiltonian Laceability of Balanced Hypercubes JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 805 EP - 817 VL - 36 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a2/ LA - en ID - DMGT_2016_36_4_a2 ER -
%0 Journal Article %A Cao, Jianxiang %A Shi, Minyong %A Feng, Lihua %T On the Edge-Hyper-Hamiltonian Laceability of Balanced Hypercubes %J Discussiones Mathematicae. Graph Theory %D 2016 %P 805-817 %V 36 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a2/ %G en %F DMGT_2016_36_4_a2
Cao, Jianxiang; Shi, Minyong; Feng, Lihua. On the Edge-Hyper-Hamiltonian Laceability of Balanced Hypercubes. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 805-817. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a2/
[1] J.A. Bondy and and U.S.R. Murty, Graph Theory with Applications (Macmillan Press, London, 1976). doi: 10.1007/978-1-349-03521-2
[2] R.X. Hao, R. Zhang, Y.Q. Feng and J.X. Zhou, Hamiltonian cycle embedding for fault tolerance in balanced hypercubes, Appl. Math. Comput. 244 (2014) 447-456. doi: 10.1016/j.amc.2014.07.015
[3] S.Y. Hsieh, G.H. Chen and C.W. Ho, Hamiltonian-laceability of star graphs, Net- works 36 (2000) 225-232. doi: 10.1002/1097-0037(200012)36:4h225::AID-NET3i3.0.CO;2-G
[4] K. Huang and J. Wu, Area efficient layout of balanced hypercubes, International Journal of High Speed Electronics and System 6 (1995) 631-646. doi: 10.1142/S0129156495000237
[5] K. Huang and J.Wu, Balanced hypercubes, in: Proceedings of the 1992 International Conference on Parallel Processing 1 (CRC Press, 1992) 153-159.
[6] M. Lewinter and W. Widulski, Hyper-Hamilton laceable and caterpillar-spannable product graphs, Comput. Math. Appl. 34 (1997) 99-104. doi: 10.1016/S0898-1221(97)00223-X
[7] H.Z. Lv and H.P. Zhang, Hyper-Hamiltonian laceability of balanced hypercubes, Jour- nal of Supercomputing 68 (2014) 302-314. doi: 10.1007/s11227-013-1040-6
[8] H.Z. Lv, X. Li and H.P. Zhang, Matching preclusion for balanced hypercube, Theoret. Comput. Sci. 465 (2012) 10-20. doi: 10.1016/j.tcs.2012.09.020
[9] G.J. Simmons, Almost all n-dimensional rectangular lattices are Hamiltonian lace- able, in: Proceedings of the 9th Southeastern Conf. on Combinatorics Graph Theory and Computing (Boca Raton, Fla., 1978) 103-108.
[10] D.B. West, Introduction to Graph Theory (Prentice Hall, 2001).
[11] J. Wu and K. Huang, The Balanced Hypercube: A cube-based system for fault-tole- rant applications, IEEE Trans. Comput. 46 (1997) 484-490. doi: 10.1109/12.588063
[12] J. Xu, Topological Structure and Analysis of Interconnection Networks (Kluwer Academic Publishers, Dordrecht, 2001). doi: 10.1007/978-1-4757-3387-7
[13] M. Xu, X.D. Hu and J.M. Xu, Edge-pancyclicity and Hamiltonian laceability of balanced hypercubes, Appl. Math. Comput. 189 (2007) 1393-1401. doi: 10.1016/j.amc.2006.12.036
[14] M.C. Yang, Bipanconnectivity of balanced hypercubes, Comput. Math. Appl. 60 (2010) 1859-1867. doi: 10.1016/j.camwa.2010.07.016
[15] J.X. Zhou, Z.L. Wu, S.C. Yang and K.W. Yuan, Symmetric property and reliability of balanced hypercube, IEEE Trans. Comput. 64 (2015) 876-881. doi: 10.1109/TC.2014.2304391