Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_4_a18, author = {Ganesan, Ashwin}, title = {Edge-Transitivity of {Cayley} {Graphs} {Generated} by {Transpositions}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1035--1042}, publisher = {mathdoc}, volume = {36}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a18/} }
Ganesan, Ashwin. Edge-Transitivity of Cayley Graphs Generated by Transpositions. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 1035-1042. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a18/
[1] S.B. Akers and B. Krishnamurthy, A group-theoretic model for symmetric interconnection networks, IEEE Trans. Comput. 38 (1989) 555-566. doi: 10.1109/12.21148
[2] N.L. Biggs, Algebraic Graph Theory (2nd Edition, Cambridge University Press, Cambridge, 1993).
[3] B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics 184 (Springer, New York, 1998).
[4] Y.-Q. Feng, Automorphism groups of Cayley graphs on symmetric groups with generating transposition sets, J. Combin. Theory Ser. B 96 (2006) 67-72. doi: 10.1016/j.jctb.2005.06.010
[5] A. Ganesan, Automorphism groups of Cayley graphs generated by connected transposition sets, Discrete Math. 313 (2013) 2482-2485. doi: 10.1016/j.disc.2013.07.013
[6] A. Ganesan, Automorphism group of the complete transposition graph, J. Algebraic Combin. 42 (2015) 793-801. doi: 10.1007/s10801-015-0602-5
[7] C. Godsil and G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics 207 (Springer, New York, 2001).
[8] M.-C. Heydemann, Cayley graphs and interconnection networks, in: Hahn and Sabidussi (Ed(s)), Graph Symmetry: Algebraic Methods and Applications (Kluwer Academic Publishers, Dordrecht 1997) 167-224.
[9] M.-C. Heydemann, N. Marlin, and S. Pérennes, Cayley graphs with complete rotations, Technical Report No 3624, INRIA (1999).
[10] A. Kelarev, J. Ryan and J. Yearwood, Cayley graphs as classifiers for data mining: The influence of asymmetries, Discrete Math. 309 (2009) 5360-5369. doi: 10.1016/j.disc.2008.11.030
[11] E. Konstantinova, Lecture notes on some problems on Cayley graphs, University of Primorska (2012).
[12] S. Lakshmivarahan, J.-S. Jwo and S.K. Dhall, Symmetry in interconnection networks based on Cayley graphs of permutation groups: A survey, Parallel Comput. 19 (1993) 361-407. doi: 10.1016/0167-8191(93)90054-O
[13] S. Latifi and P.K. Srimani, Transposition networks as a class of fault-tolerant robust networks, Computer Science Technical Report CS-95-104, Colorado State University (1995).
[14] S. Latifi and P.K. Srimani, Transposition networks as a class of fault-tolerant robust networks, IEEE Trans. Comput. (1996) 230-238. doi: 10.1109/12.485375
[15] W. Mader, Über den Zusammenhang symmetrischer Graphen, Arch. Math. (Basel) 21 (1970) 331-336. doi: 10.1007/BF01220924
[16] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 96-115.
[17] G. Sabidussi, Graph derivatives, Math. Z. 76 (1961) 385-401. doi: 10.1007/BF01210984
[18] M.E. Watkins, Connectivity of transitive graphs, J. Combin. Theory 8 (1970) 23-29. doi: 10.1016/S0021-9800(70)80005-9
[19] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150-168. doi: 10.2307/2371086
[20] Z. Zhang and Q. Huang, Automorphism groups of bubble-sort graphs and modified bubble-sort graphs, Adv. Math. 34 (2005) 441-447, in China. doi: 10.11845/sxjz.2005.34.04.0441