Edge-Transitivity of Cayley Graphs Generated by Transpositions
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 1035-1042

Voir la notice de l'article provenant de la source Library of Science

Let S be a set of transpositions generating the symmetric group Sn (n ≥ 5). The transposition graph of S is defined to be the graph with vertex set 1, . . ., n, and with vertices i and j being adjacent in T(S) whenever (i, j) ∈ S. In the present note, it is proved that two transposition graphs are isomorphic if and only if the corresponding two Cayley graphs are isomorphic. It is also proved that the transposition graph T(S) is edge-transitive if and only if the Cayley graph Cay(Sn, S) is edge-transitive.
Keywords: Cayley graphs, transpositions, automorphisms of graphs, edge-transitive graphs, line graphs, Whitney’s isomorphism theorem
@article{DMGT_2016_36_4_a18,
     author = {Ganesan, Ashwin},
     title = {Edge-Transitivity of {Cayley} {Graphs} {Generated} by {Transpositions}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1035--1042},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a18/}
}
TY  - JOUR
AU  - Ganesan, Ashwin
TI  - Edge-Transitivity of Cayley Graphs Generated by Transpositions
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 1035
EP  - 1042
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a18/
LA  - en
ID  - DMGT_2016_36_4_a18
ER  - 
%0 Journal Article
%A Ganesan, Ashwin
%T Edge-Transitivity of Cayley Graphs Generated by Transpositions
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 1035-1042
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a18/
%G en
%F DMGT_2016_36_4_a18
Ganesan, Ashwin. Edge-Transitivity of Cayley Graphs Generated by Transpositions. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 1035-1042. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a18/