Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_4_a17, author = {Alc\'on, Liliana}, title = {A {Note} on {Path} {Domination}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1021--1034}, publisher = {mathdoc}, volume = {36}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a17/} }
Alcón, Liliana. A Note on Path Domination. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 1021-1034. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a17/
[1] L. Alcón, B. Brešar, T. Gologranc, M. Gutierrez, T. Kraner Šumenjak, I. Peterin and A. Tepeh, Toll convexity, European J. Combin. 46 (2015) 161-175. doi: 10.1016/j.ejc.2015.01.002
[2] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey (SIAM, Monographs on Discrete Mathematics and Applications, Philadelphia, 1999). doi: 10.1137/1.9780898719796
[3] M. Changat, S. Klavžar and H.M. Mulder, The all-paths transit function of a graph, Czechoslovak Math. J. 51 (2001) 439-448. doi: 10.1023/A:1013715518448
[4] M. Changat and J. Mathew, On triangle path convexity in graphs, Discrete Math. 206 (1999) 91-95. doi: 10.1016/S0012-365X(98)00394-X
[5] M. Changat, G.N. Prasanth and I.M. Pelayo, The longest path transit function of a graph and betweenness, Util. Math. 82 (2010) 111-127.
[6] E. Howorka, A characterization of distance-hereditary graphs, Q. J. Math. 28 (1977) 417-420. doi: 10.1093/qmath/28.4.417
[7] E. Howorka, A characterization of ptolemaic graphs, J. Graph Theory 5 (1981) 323-331. doi: 10.1002/jgt.3190050314
[8] C.G. Lekkerkerker and J.Ch. Boland, Representation of a finite graph by a set of intervals on the real line, Fund. Math. 51 (1962) 45-64.
[9] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory (SIAM, Monographs on Discrete Mathematics and Applications, Philadelphia, 1999). doi: 10.1137/1.9780898719802
[10] H.M. Mulder, Transit functions on graphs (and posets), in: M. Changat, S. Klavžar, H.M. Mulder, A. Vijayakumar, (Ed(s)), Convexity in Discrete Structures, Ramanujan Math. Soc. Lect. Notes Ser. 5 (2008) 117-130.
[11] H.M. Mulder, The Interval Function of a Graph (Mathematisch Centrum, Amsterdam, 1980).
[12] L. Nebeský, A characterization of the interval function of a connected graph, Czechoslovak Math. J. 44 (1994) 173-178.
[13] L. Nebeský, Characterizing the interval function of a connected graph, Math. Bohem. 123 (1998) 137-144.
[14] I.M. Pelayo, Geodesic Convexity in Graphs (Springer, New York, Heidelberg, Dordrecht, London, 2013). doi: 10.1007/978-1-4614-8699-2
[15] M. Preissmann, D. de Werra and N.V.R. Mahadev, A note on superbrittle graphs, Discrete Math. 61 (1986) 259-267. doi: 10.1016/0012-365X(86)90097-X
[16] J.P. Spinrad, Efficient Graph Representation, Fields Institute Monographs 19 (American Mathematics Society, Providence, 2003).
[17] D.B.West, Introduction to Graph Theory (2nd Edition, Prentice-Hall, Upper Saddle River, 2000).