Radio Graceful Hamming Graphs
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 1007-1020

Voir la notice de l'article provenant de la source Library of Science

For k ∈ℤ_+ and G a simple, connected graph, a k-radio labeling f : V (G) →ℤ_+ of G requires all pairs of distinct vertices u and v to satisfy |f(u) − f(v)| ≥ k + 1 − d(u, v). We consider k-radio labelings of G when k = diam (G). In this setting, f is injective; if f is also surjective onto 1, 2, . . ., |V (G)|, then f is a consecutive radio labeling. Graphs that can be labeled with such a labeling are called radio graceful. In this paper, we give two results on the existence of radio graceful Hamming graphs. The main result shows that the Cartesian product of t copies of a complete graph is radio graceful for certain t. Graphs of this form provide infinitely many examples of radio graceful graphs of arbitrary diameter. We also show that these graphs are not radio graceful for large t.
Keywords: radio labeling, radio graceful graph, Hamming graph
@article{DMGT_2016_36_4_a16,
     author = {Niedzialomski, Amanda},
     title = {Radio {Graceful} {Hamming} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1007--1020},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a16/}
}
TY  - JOUR
AU  - Niedzialomski, Amanda
TI  - Radio Graceful Hamming Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 1007
EP  - 1020
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a16/
LA  - en
ID  - DMGT_2016_36_4_a16
ER  - 
%0 Journal Article
%A Niedzialomski, Amanda
%T Radio Graceful Hamming Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 1007-1020
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a16/
%G en
%F DMGT_2016_36_4_a16
Niedzialomski, Amanda. Radio Graceful Hamming Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 1007-1020. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a16/