Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_4_a14, author = {Xi, Weige and Wang, Ligong}, title = {Sharp {Upper} {Bounds} on the {Signless} {Laplacian} {Spectral} {Radius} of {Strongly} {Connected} {Digraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {977--988}, publisher = {mathdoc}, volume = {36}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a14/} }
TY - JOUR AU - Xi, Weige AU - Wang, Ligong TI - Sharp Upper Bounds on the Signless Laplacian Spectral Radius of Strongly Connected Digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 977 EP - 988 VL - 36 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a14/ LA - en ID - DMGT_2016_36_4_a14 ER -
%0 Journal Article %A Xi, Weige %A Wang, Ligong %T Sharp Upper Bounds on the Signless Laplacian Spectral Radius of Strongly Connected Digraphs %J Discussiones Mathematicae. Graph Theory %D 2016 %P 977-988 %V 36 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a14/ %G en %F DMGT_2016_36_4_a14
Xi, Weige; Wang, Ligong. Sharp Upper Bounds on the Signless Laplacian Spectral Radius of Strongly Connected Digraphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 977-988. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a14/
[1] Ş.B. Bozkurt and D. Bozkurt, On the signless Laplacian spectral radius of digraphs, Ars Combin. 108 (2013) 193-200.
[2] B.K. Bulter and P.H. Siegel, Sharp bounds on the spectral radius of nonnegative matrices and digraphs, Linear Algebra Appl. 439 (2013) 1468-1478. doi: 10.1016/j.laa.2013.04.029
[3] Y.Q. Chen and L.G. Wang, Sharp bounds for the largest eigenvalue of the signless Laplacian of a graph, Linear Algebra Appl. 433 (2010) 908-913. doi: 10.1016/j.laa.2010.04.026
[4] S.Y. Cui, C.X. Tian and J.J. Guo, A sharp upper bound on the signless Laplacian spectral radius of graphs, Linear Algebra Appl. 439 (2013) 2442-2447. doi: 10.1016/j.laa.2013.06.015
[5] K.Ch. Das, A characterization on graphs which achieve the upper bound for the largest Laplacian eigenvalue of graphs, Linear Algebra Appl. 376 (2004) 173-186. doi: 10.1016/j.laa.2003.06.009
[6] K.Ch. Das, The Laplacian spectrum of a graph, Comput. Math. Appl. 48 (2004) 715-724. doi: 10.1016/j.camwa.2004.05.005
[7] K.Ch. Das, Maximizing the sum of the squares of the degrees of a graph, Discrete Math. 285 (2004) 57-66. doi: 10.1016/j.disc.2004.04.007
[8] E. Gudiño and J. Rada, A lower bound for the spectral radius of a digraph, Linear Algebra Appl. 433 (2010) 233-240. doi: 10.1016/j.laa.2010.02.012
[9] A.D. Güngör, K.C. Das and A.S. C¸ evik, Sharp upper bounds on the spectral radius of the signless Laplacian matrix of a graph, Appl. Math. Comput. 219 (2013) 5025-5032. doi: 10.1016/j.amc.2012.11.039
[10] W.X. Hong and L.H. You, Spectral radius and signless Laplacian spectral radius of strongly connected digraphs, Linear Algebra Appl. 457 (2014) 93-113. doi: 10.1016/j.laa.2014.05.007
[11] R.A. Horn and C.R. Johnson, Matrix Analysis (Cambridge University Press, New York, 1985). doi: 10.1017/CBO9780511810817
[12] W.W. Lang and L.G. Wang, Sharp bounds for the signless Laplacian spectral radius of digraphs, Appl. Math. Comput. 238 (2014) 43-49. doi: 10.1016/j.amc.2014.04.001
[13] M.H. Liu, B.L. Liu and B. Cheng, Ordering (signless) Laplacian spectral radii with maximum degrees of graphs, Discrete Math. 338 (2015) 159-163. doi: 10.1016/j.disc.2014.09.007
[14] C.S. Oliveira, L.S. de Lima, N.M.M. de Abreu and P. Hansen, Bounds on the index of the signless Laplacian of a graph, Discrete Appl. Math. 158 (2010) 355-360. doi: 10.1016/j.dam.2009.06.023
[15] Y.L. Pan, Sharp upper bounds for the Laplacian graph eigenvalues, Linear Algebra Appl. 355 (2002) 287-295. doi: 10.1016/S0024-3795(02)00353-1
[16] G.H. Xu, K.F. Fang and J. Shen, Bounds on the spectral radii of digraphs in terms of walks, Appl. Math. Comput. 219 (2012) 3721-3728. doi: 10.1016/j.amc.2012.09.073
[17] G.L. Yu, Y.R. Wu and J.L. Shu, Sharp bounds on the signless Laplacian spectral radii of graphs, Linear Algebra Appl. 434 (2011) 683-687. doi: 10.1016/j.laa.2010.09.029