Sharp Upper Bounds on the Signless Laplacian Spectral Radius of Strongly Connected Digraphs
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 977-988.

Voir la notice de l'article provenant de la source Library of Science

Let G = (V (G),E(G)) be a simple strongly connected digraph and q(G) be the signless Laplacian spectral radius of G. For any vertex v_i ∈ V (G), let d+i denote the outdegree of v_i, m_i^+ denote the average 2-outdegree of v_i, and N_i^+ denote the set of out-neighbors of v_i. In this paper, we prove that: (1) q(G) = d_1^+ + d_2^+, (d_1^+ d_2^+ ) if and only if G is a star digraph K_1,n-1, where d_1^+, d_2^+ are the maximum and the second maximum outdegree, respectively (K_1,n-1 is the digraph on n vertices obtained from a star graph K_1,n−1 by replacing each edge with a pair of oppositely directed arcs). (2) q(G) ≤max{1/2( d_i^+ + √( d_i^+ ^2 + 8d_i^+ m_i^+ )) : v_i ∈ V(G) } with equality if and only if G is a regular digraph. (3) q(G) ≤max{1/2( d_i^+ + √(d_i^+^2 + 4/d_i^+∑_v_j ∈ N_i^+ d_j^+ ( d_j^+ + m_j^+ ) )) : v_i ∈ V(G) }. Moreover, the equality holds if and only if G is a regular digraph or a bipartite semiregular digraph. (4) q(G) ≤max{1/2( d_i^+ + 2d_j^+ - 1 + √( ( d_i^+ - 2d_j^+ + 1 )^2 + 4d_i^+ )) : ( v_j, v_i ) ∈ E(G) }. If the equality holds, then G is a regular digraph or G ∈Ω, where Ω is a class of digraphs defined in this paper.
Keywords: digraph, signless Laplacian spectral radius
@article{DMGT_2016_36_4_a14,
     author = {Xi, Weige and Wang, Ligong},
     title = {Sharp {Upper} {Bounds} on the {Signless} {Laplacian} {Spectral} {Radius} of {Strongly} {Connected} {Digraphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {977--988},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a14/}
}
TY  - JOUR
AU  - Xi, Weige
AU  - Wang, Ligong
TI  - Sharp Upper Bounds on the Signless Laplacian Spectral Radius of Strongly Connected Digraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 977
EP  - 988
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a14/
LA  - en
ID  - DMGT_2016_36_4_a14
ER  - 
%0 Journal Article
%A Xi, Weige
%A Wang, Ligong
%T Sharp Upper Bounds on the Signless Laplacian Spectral Radius of Strongly Connected Digraphs
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 977-988
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a14/
%G en
%F DMGT_2016_36_4_a14
Xi, Weige; Wang, Ligong. Sharp Upper Bounds on the Signless Laplacian Spectral Radius of Strongly Connected Digraphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 977-988. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a14/

[1] Ş.B. Bozkurt and D. Bozkurt, On the signless Laplacian spectral radius of digraphs, Ars Combin. 108 (2013) 193-200.

[2] B.K. Bulter and P.H. Siegel, Sharp bounds on the spectral radius of nonnegative matrices and digraphs, Linear Algebra Appl. 439 (2013) 1468-1478. doi: 10.1016/j.laa.2013.04.029

[3] Y.Q. Chen and L.G. Wang, Sharp bounds for the largest eigenvalue of the signless Laplacian of a graph, Linear Algebra Appl. 433 (2010) 908-913. doi: 10.1016/j.laa.2010.04.026

[4] S.Y. Cui, C.X. Tian and J.J. Guo, A sharp upper bound on the signless Laplacian spectral radius of graphs, Linear Algebra Appl. 439 (2013) 2442-2447. doi: 10.1016/j.laa.2013.06.015

[5] K.Ch. Das, A characterization on graphs which achieve the upper bound for the largest Laplacian eigenvalue of graphs, Linear Algebra Appl. 376 (2004) 173-186. doi: 10.1016/j.laa.2003.06.009

[6] K.Ch. Das, The Laplacian spectrum of a graph, Comput. Math. Appl. 48 (2004) 715-724. doi: 10.1016/j.camwa.2004.05.005

[7] K.Ch. Das, Maximizing the sum of the squares of the degrees of a graph, Discrete Math. 285 (2004) 57-66. doi: 10.1016/j.disc.2004.04.007

[8] E. Gudiño and J. Rada, A lower bound for the spectral radius of a digraph, Linear Algebra Appl. 433 (2010) 233-240. doi: 10.1016/j.laa.2010.02.012

[9] A.D. Güngör, K.C. Das and A.S. C¸ evik, Sharp upper bounds on the spectral radius of the signless Laplacian matrix of a graph, Appl. Math. Comput. 219 (2013) 5025-5032. doi: 10.1016/j.amc.2012.11.039

[10] W.X. Hong and L.H. You, Spectral radius and signless Laplacian spectral radius of strongly connected digraphs, Linear Algebra Appl. 457 (2014) 93-113. doi: 10.1016/j.laa.2014.05.007

[11] R.A. Horn and C.R. Johnson, Matrix Analysis (Cambridge University Press, New York, 1985). doi: 10.1017/CBO9780511810817

[12] W.W. Lang and L.G. Wang, Sharp bounds for the signless Laplacian spectral radius of digraphs, Appl. Math. Comput. 238 (2014) 43-49. doi: 10.1016/j.amc.2014.04.001

[13] M.H. Liu, B.L. Liu and B. Cheng, Ordering (signless) Laplacian spectral radii with maximum degrees of graphs, Discrete Math. 338 (2015) 159-163. doi: 10.1016/j.disc.2014.09.007

[14] C.S. Oliveira, L.S. de Lima, N.M.M. de Abreu and P. Hansen, Bounds on the index of the signless Laplacian of a graph, Discrete Appl. Math. 158 (2010) 355-360. doi: 10.1016/j.dam.2009.06.023

[15] Y.L. Pan, Sharp upper bounds for the Laplacian graph eigenvalues, Linear Algebra Appl. 355 (2002) 287-295. doi: 10.1016/S0024-3795(02)00353-1

[16] G.H. Xu, K.F. Fang and J. Shen, Bounds on the spectral radii of digraphs in terms of walks, Appl. Math. Comput. 219 (2012) 3721-3728. doi: 10.1016/j.amc.2012.09.073

[17] G.L. Yu, Y.R. Wu and J.L. Shu, Sharp bounds on the signless Laplacian spectral radii of graphs, Linear Algebra Appl. 434 (2011) 683-687. doi: 10.1016/j.laa.2010.09.029