Graphs with Large Generalized (Edge-)Connectivity
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 931-958

Voir la notice de l'article provenant de la source Library of Science

The generalized k-connectivity κ_k (G) of a graph G, introduced by Hager in 1985, is a nice generalization of the classical connectivity. Recently, as a natural counterpart, we proposed the concept of generalized k-edge-connectivity λ_k (G). In this paper, graphs of order n such that κ_k (G) = n - k/2 - 1 and λ_k (G) = n - k/2 - 1 for even k are characterized.
Keywords: (edge-)connectivity, Steiner tree, internally disjoint trees, edge-disjoint trees, packing, generalized (edge-)connectivity
@article{DMGT_2016_36_4_a12,
     author = {Li, Xueliang and Mao, Yaping},
     title = {Graphs with {Large} {Generalized} {(Edge-)Connectivity}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {931--958},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a12/}
}
TY  - JOUR
AU  - Li, Xueliang
AU  - Mao, Yaping
TI  - Graphs with Large Generalized (Edge-)Connectivity
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 931
EP  - 958
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a12/
LA  - en
ID  - DMGT_2016_36_4_a12
ER  - 
%0 Journal Article
%A Li, Xueliang
%A Mao, Yaping
%T Graphs with Large Generalized (Edge-)Connectivity
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 931-958
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a12/
%G en
%F DMGT_2016_36_4_a12
Li, Xueliang; Mao, Yaping. Graphs with Large Generalized (Edge-)Connectivity. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 931-958. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a12/