Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_4_a10, author = {Dara, Suresh and Hegde, S.M. and Deva, Venkateshwarlu and Rao, S.B. and Zaslavsky, Thomas}, title = {The {Dynamics} of the {Forest} {Graph} {Operator}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {899--913}, publisher = {mathdoc}, volume = {36}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a10/} }
TY - JOUR AU - Dara, Suresh AU - Hegde, S.M. AU - Deva, Venkateshwarlu AU - Rao, S.B. AU - Zaslavsky, Thomas TI - The Dynamics of the Forest Graph Operator JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 899 EP - 913 VL - 36 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a10/ LA - en ID - DMGT_2016_36_4_a10 ER -
%0 Journal Article %A Dara, Suresh %A Hegde, S.M. %A Deva, Venkateshwarlu %A Rao, S.B. %A Zaslavsky, Thomas %T The Dynamics of the Forest Graph Operator %J Discussiones Mathematicae. Graph Theory %D 2016 %P 899-913 %V 36 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a10/ %G en %F DMGT_2016_36_4_a10
Dara, Suresh; Hegde, S.M.; Deva, Venkateshwarlu; Rao, S.B.; Zaslavsky, Thomas. The Dynamics of the Forest Graph Operator. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 899-913. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a10/
[1] H.J. Broersma and X. Li, The connectivity of the leaf-exchange spanning tree graph of a graph, Ars Combin. 43 (1996) 225-231.
[2] R. Cummins, Hamilton circuits in tree graphs, IEEE Trans. Circuit Theory CT-13 (1966) 82-90. doi: 10.1109/TCT.1966.1082546
[3] K.Ch. Das, A.S. Cevik and I.N. Cangul, The number of spanning trees of a graph, J. Inequal. Appl. 2013 (2013) article 395, 13 pages.
[4] K.Ch. Das, A sharp upper bound for the number of spanning trees of a graph, Graphs Combin. 23 (2007) 625-632. doi: 10.1007/s00373-007-0758-4
[5] R. Diestel, Graph Theory, Third Edition, Graduate Texts in Mathematics, Volume 173 (Springer, Heidelberg, 2005).
[6] L. Feng, K. Xu, K.Ch. Das, A. Ilić and G. Yu, The number of spanning trees of a graph with given matching number, Int. J. Comput. Math. 93 (2016) 837-843. doi: 10.1080/00207160.2015.1021341
[7] L. Feng, G. Yu, Z. Jiang and L. Ren, Sharp upper bounds for the number of spanning trees of a graph, Appl. Anal. Discrete Math. 2 (2008) 255-259. doi: 10.2298/AADM0802255F
[8] G.R. Grimmett, An upper bound for the number of spanning trees of a graph, Dis- crete Math. 16 (1976) 323-324. doi: 10.1016/S0012-365X(76)80005-2
[9] E. Kamke, Theory of Sets (Courier, 1950).
[10] J. Li, W.C. Shiu and A. Chang, The number of spanning trees of a graph, Appl. Math. Lett. 23 (2010) 286-290. doi: 10.1016/j.aml.2009.10.006
[11] G. Liu, On connectivities of tree graphs, J. Graph Theory 12 (1988) 453-459. doi: 10.1002/jgt.3190120318
[12] E. Prisner, Graph Dynamics (CRC Press, 1995).
[13] J. Rodriguez and L. Petingi, A sharp upper bound for the number of spanning trees of a graph, in: Proceedings of the Twenty-Eighth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, Fla., 1997), Congr. Numer. 126 (1997) 209-217.
[14] H. Shank, A note on Hamilton circuits in tree graphs, IEEE Trans. Circuit Theory CT-15 (1968) 86-86. doi: 10.1109/TCT.1968.1082765
[15] D.V.V.P.R.V.B. Suresh, V. Deva and S.B. Rao, Dynamics of spanning tree graph operator, in: International Congress of Mathematicians ICM 2010, Short Communications Abstracts Book (Hindustan Book Agency, 2010) 472-473.
[16] Y. Teranishi, The number of spanning forests of a graph, Discrete Math. 290 (2005) 259-267. doi: 10.1016/j.disc.2004.10.014
[17] H. Whitney, 2-isomorphic graphs, Amer. J. Math. 55 (1933) 245-254. doi: 10.2307/2371127
[18] F.J. Zhang and Z. Chen, Connectivity of (adjacency) tree graphs, J. Xinjiang University (Natural Science) 3 (1986) 1-5.
[19] X.-D. Zhang, A new bound for the complexity of a graph, Util. Math. 67 (2005) 201-203.