Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_4_a1, author = {Ma, Xuanlong and Wang, Kaishun}, title = {Integral {Cayley} {Sum} {Graphs} and {Groups}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {797--803}, publisher = {mathdoc}, volume = {36}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a1/} }
Ma, Xuanlong; Wang, Kaishun. Integral Cayley Sum Graphs and Groups. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 797-803. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a1/
[1] A. Abdollahi and M. Jazaeri, Groups all of whose undirected Cayley graphs are integral, European J. Combin. 38 (2014) 102-109. doi: 10.1016/j.ejc.2013.11.007
[2] A. Abdollahi and E. Vatandoost, Which Cayley graphs are integral?, Electron. J. Combin. 16 (2009) #R122.
[3] A. Ahmady, J.P. Bell and B. Mohar, Integral Cayley graphs and groups, SIAM J. Discrete Math. 28 (2014) 685-701. doi: 10.1137/130925487
[4] N. Alon, Large sets in finite fields are sumsets, J. Number Theory 126 (2007) 110-118. doi: 10.1016/j.jnt.2006.11.007
[5] M. Amooshahi and B. Taeri, On Cayley sum graphs of non-Abelian groups, Graphs Combin. 32 (2016) 17-29. doi: 10.1007/s00373-015-1535-4
[6] A.E. Brouwer and W.H. Haemers, Spectra of Graphs (Springer-Verlag, New York, 2012). doi: 10.1007/978-1-4614-1939-6
[7] F.C. Bussemaker and D.M. Cvetković, There are exactly 13 connected, cubic, integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544-576 (1976) 43-48.
[8] B. Cheyne, V. Gupta and C. Wheeler, Hamilton cycles in addition graphs, Rose- Hulman Undergrad. Math J. 4 (2003) 1-17.
[9] F.R.K. Chung, Diameters and eigenvalues, J. Amer. Math. Soc. 2 (1989) 187-196. doi: 10.1090/S0894-0347-1989-0965008-X
[10] M. DeVos, L. Goddyn, B. Mohar and R. Šámal, Cayley sum graphs and eigenvalues of (3, 6)-fullerenes, J. Combin. Theory Ser. B 99 (2009) 358-369. doi: 10.1016/j.jctb.2008.08.005
[11] I. Estélyi and I. Kovács, On groups all of whose undirected Cayley graphs of bounded valency are integral, Electron. J. Combin. 21 (2014) #P4.45.
[12] B.J. Green, Counting sets with small sumset, and the clique number of random Cayley graphs, Combinatorica 25 (2005) 307-326. doi: s00493-005-0018-2
[13] F. Harary and A.J. Schwenk, Which graphs have integral spectra? in: R.A. Bari and F. Harary (Eds.), Graphs and Combinatorics, Lecture Notes in Math. 406 (Springer, 1974) 45-51. doi: 10.1007/bfb0066434
[14] W. Klotz and T. Sander, Integral Cayley graphs over abelian groups, Electron. J. Combin. 17 (2010) #R81.
[15] X. Ma and K. Wang, On finite groups all of whose cubic Cayley graphs are integral, J. Algebra Appl. 15 (2016) 1650105, 10 pp. doi: 10.1142/S021949881650105X
[16] A.J. Schwenk, Exactly thirteen connected cubic graphs have integral spectra, in: Y. Alavi and D.R. Lick (Eds.), Theory and Applications of Graphs, Lecture Notes in Math. 642 (Springer, 1978) 516-533. doi: 10.1007/BFb0070407
[17] W. So, Integral circulant graphs, Discrete Math. 306 (2006) 153-158. doi: 10.1016/j.disc.2005.11.006