Integral Cayley Sum Graphs and Groups
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 797-803

Voir la notice de l'article provenant de la source Library of Science

For any positive integer k, let k denote the set of finite abelian groups G such that for any subgroup H of G all Cayley sum graphs CayS(H, S) are integral if |S| = k. A finite abelian group G is called Cayley sum integral if for any subgroup H of G all Cayley sum graphs on H are integral. In this paper, the classes 2 and 3 are classified. As an application, we determine all finite Cayley sum integral groups.
Keywords: Cayley sum graph, integral graph, Cayley sum integral group
@article{DMGT_2016_36_4_a1,
     author = {Ma, Xuanlong and Wang, Kaishun},
     title = {Integral {Cayley} {Sum} {Graphs} and {Groups}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {797--803},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a1/}
}
TY  - JOUR
AU  - Ma, Xuanlong
AU  - Wang, Kaishun
TI  - Integral Cayley Sum Graphs and Groups
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 797
EP  - 803
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a1/
LA  - en
ID  - DMGT_2016_36_4_a1
ER  - 
%0 Journal Article
%A Ma, Xuanlong
%A Wang, Kaishun
%T Integral Cayley Sum Graphs and Groups
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 797-803
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a1/
%G en
%F DMGT_2016_36_4_a1
Ma, Xuanlong; Wang, Kaishun. Integral Cayley Sum Graphs and Groups. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 797-803. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a1/