Perfect Set of Euler Tours of Kp,p,p
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 783-796

Voir la notice de l'article provenant de la source Library of Science

Bermond conjectured that if G is Hamilton cycle decomposable, then L(G), the line graph of G, is Hamilton cycle decomposable. In this paper, we construct a perfect set of Euler tours for the complete tripartite graph Kp,p,p for any prime p and hence prove Bermond’s conjecture for G = Kp,p,p.
Keywords: compatible Euler tour, line graph, Hamilton cycle decomposition
@article{DMGT_2016_36_4_a0,
     author = {Govindan, T. and Muthusamy, A.},
     title = {Perfect {Set} of {Euler} {Tours} of {K\protect\textsubscript{p,p,p}}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {783--796},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a0/}
}
TY  - JOUR
AU  - Govindan, T.
AU  - Muthusamy, A.
TI  - Perfect Set of Euler Tours of Kp,p,p
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 783
EP  - 796
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a0/
LA  - en
ID  - DMGT_2016_36_4_a0
ER  - 
%0 Journal Article
%A Govindan, T.
%A Muthusamy, A.
%T Perfect Set of Euler Tours of Kp,p,p
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 783-796
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a0/
%G en
%F DMGT_2016_36_4_a0
Govindan, T.; Muthusamy, A. Perfect Set of Euler Tours of Kp,p,p. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 783-796. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a0/