Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_3_a8, author = {Alimadadi, Abdollah and Mojdeh, Doost Ali and Rad, Nader Jafari}, title = {Various {Bounds} for {Liar{\textquoteright}s} {Domination} {Number}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {629--641}, publisher = {mathdoc}, volume = {36}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a8/} }
TY - JOUR AU - Alimadadi, Abdollah AU - Mojdeh, Doost Ali AU - Rad, Nader Jafari TI - Various Bounds for Liar’s Domination Number JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 629 EP - 641 VL - 36 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a8/ LA - en ID - DMGT_2016_36_3_a8 ER -
Alimadadi, Abdollah; Mojdeh, Doost Ali; Rad, Nader Jafari. Various Bounds for Liar’s Domination Number. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 629-641. http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a8/
[1] D. Auger, Induced paths in twin-free graphs, Electron. J. Combin. 15 #N17 (2008).
[2] J.A. Bondy and U.S.R. Murty, Graph Theory, Graduate Texts in Mathematics 244 (Springer-Verlag, London, 2008).
[3] G. Chartrand and L. Lesniak, Graphs and Digraphs, 4th Ed. (CRC Press, Bocz Raton, 2004).
[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs, Advanced Topics (Marcel Dekker, Inc., New York, 1998).
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graph (Marcel Dekker, Inc., New York, 1998).
[6] T.W. Haynes, P.J. Slater and C. Sterling, Liar’s domination in ladders, Congr. Numer. 212 (2012) 45-56.
[7] I. Honkala, T. Laihonen and S. Ranto, On codes identifying sets of vertices in Hamming spaces, Des. Codes Cryptogr. 24 (2001) 193-204. doi:10.1023/A:1011256721935
[8] V. Junnila and T. Laihonen, Optimal identifying codes in cycles and paths, Graphs Combin. 28 (2012) 469-481. doi:10.1007/s00373-011-1058-6
[9] M.G. Karpovsky, K. Chakrabarty and L.B. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Trans. Inform. Theory 44 (1998) 599-611. doi:10.1109/18.661507
[10] M. Nikodem, False alarms in fault-tolerant dominating sets in graphs, Opuscula Math. 32 (2012) 751-760. doi:10.7494/OpMath.2012.32.4.751
[11] B.S. Panda and S. Paul, Hardness results and approximation algorithm for total liar’s domination in graphs, J. Comb. Optim. 27 (2014) 643-662. doi:10.1007/s10878-012-9542-3
[12] B.S. Panda and S. Paul, Liar’s domination in graphs: Complexity and algorithm, Discrete Appl. Math. 161 (2013) 1085-1092. doi:10.1016/j.dam.2012.12.011
[13] B.S. Panda and S. Paul, A linear time algorithm for liar’s domination problem in proper interval graphs, Inform. Process. Lett. 113 (2013) 815-822. doi:10.1016/j.ipl.2013.07.012
[14] M.L. Roden and P.J. Slater, Liar’s domination and the domination continuum, Congr. Numer. 190 (2008) 77-85.
[15] M.L. Roden and P.J. Slater, Liar’s domination in graphs, Discrete Math. 309 (2009) 5884-5890. doi:10.1016/j.disc.2008.07.019
[16] P.J. Slater, Liar’s domination, Networks 54 (2009) 70-74. doi:10.1002/net.20295
[17] J. Zhou, Z. Zhang, W. Wu and K. Xing, A greedy algorithm for the fault-tolerant connected dominating set in a general graph, J. Comb. Optim. 28 (2014) 310-319. doi:10.1007/s10878-013-9638-4