Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_3_a2, author = {Nakamoto, Atsuhiro and Negami, Seiya and Ohba, Kyoji and Suzuki, Yusuke}, title = {Looseness and {Independence} {Number} of {Triangulations} on {Closed} {Surfaces}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {545--554}, publisher = {mathdoc}, volume = {36}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a2/} }
TY - JOUR AU - Nakamoto, Atsuhiro AU - Negami, Seiya AU - Ohba, Kyoji AU - Suzuki, Yusuke TI - Looseness and Independence Number of Triangulations on Closed Surfaces JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 545 EP - 554 VL - 36 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a2/ LA - en ID - DMGT_2016_36_3_a2 ER -
%0 Journal Article %A Nakamoto, Atsuhiro %A Negami, Seiya %A Ohba, Kyoji %A Suzuki, Yusuke %T Looseness and Independence Number of Triangulations on Closed Surfaces %J Discussiones Mathematicae. Graph Theory %D 2016 %P 545-554 %V 36 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a2/ %G en %F DMGT_2016_36_3_a2
Nakamoto, Atsuhiro; Negami, Seiya; Ohba, Kyoji; Suzuki, Yusuke. Looseness and Independence Number of Triangulations on Closed Surfaces. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 545-554. http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a2/
[1] K. Appel, W. Haken and J. Koch, Every planar map is four colorable, Illinois J. Math. 21 (1977) 429-567.
[2] J.L. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs, J. Graph Theory 16 (1992) 319-326. doi:10.1002/jgt.3190160405
[3] J.L. Arocha, J. Bracho and V. Neumann-Lara, Tight and untight triangulations surfaces by complete graphs, J. Combin. Theory Ser. B 63 (1995) 185-199. doi:10.1006/jctb.1995.1015
[4] J. Czap, S. Jendroľ, F. Kardoš and J. Miškuf, Looseness of plane graphs, Graphs Combin. 27 (2011) 73-85. doi:10.1007/s00373-010-0961-6
[5] S. Negami and T. Midorikawa, Loosely-tightness of triangulations of closed surfaces, Sci. Rep. Yokohama Nat. Univ., Sec. I 43 (1996) 25-41.
[6] S. Negami, Looseness ranges of traingulations on closed surfaces, Discrete Math. 303 (2005) 167-174. doi:10.1016/j.disc.2005.01.010
[7] G. Ringel, Map Color Theorem (Springer-Verlag, Berlin Heidelberg, 1974). doi:10.1007/978-3-642-65759-7
[8] T. Tanuma, One-loosely tight triangulations on closed surfaces, Yokohama Math. J. 47 (1999) 203-211.