Spanning Trees whose Stems have a Bounded Number of Branch Vertices
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 773-778.

Voir la notice de l'article provenant de la source Library of Science

Let T be a tree, a vertex of degree one and a vertex of degree at least three is called a leaf and a branch vertex, respectively. The set of leaves of T is denoted by Leaf(T). The subtree T − Leaf(T) of T is called the stem of T and denoted by Stem(T). In this paper, we give two sufficient conditions for a connected graph to have a spanning tree whose stem has a bounded number of branch vertices, and these conditions are best possible.
Keywords: spanning tree, stem, branch vertex
@article{DMGT_2016_36_3_a18,
     author = {Yan, Zheng},
     title = {Spanning {Trees} whose {Stems} have a {Bounded} {Number} of {Branch} {Vertices}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {773--778},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a18/}
}
TY  - JOUR
AU  - Yan, Zheng
TI  - Spanning Trees whose Stems have a Bounded Number of Branch Vertices
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 773
EP  - 778
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a18/
LA  - en
ID  - DMGT_2016_36_3_a18
ER  - 
%0 Journal Article
%A Yan, Zheng
%T Spanning Trees whose Stems have a Bounded Number of Branch Vertices
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 773-778
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a18/
%G en
%F DMGT_2016_36_3_a18
Yan, Zheng. Spanning Trees whose Stems have a Bounded Number of Branch Vertices. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 773-778. http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a18/

[1] E. Flandrin, T. Kaiser, R. Kužel, H. Li and Z. Ryjǎćek, Neighborhood unions and extremal spanning trees, Discrete Math. 308 (2008) 2343-2350. doi:10.1016/j.disc.2007.04.071

[2] L. Gargano and M. Hammar, There are spanning spiders in dense graphs (and we know how to find them), Lect. Notes Comput. Sci. 2719 (2003) 802-816. doi:10.1007/3-540-45061-0 63

[3] L. Gargano, M. Hammar, P. Hell, L. Stacho and U. Vaccaro, Spanning spiders and light-splitting switchs, Discrete Math. 285 (2004) 83-95. doi:10.1016/j.disc.2004.04.005

[4] L. Gargano, P. Hell, L. Stacho and U. Vaccaro, Spanning trees with bounded number of branch vertices, Lect. Notes Comput. Sci. 2380 (2002) 355-365. doi:10.1007/3-540-45465-9 31

[5] M. Kano, M. Tsugaki and G. Yan, Spanning trees whose stems have bounded degrees, preprint.

[6] M. Kano and Z. Yan, Spanning trees whose stems have at most k leaves, Ars Combin. CXIVII (2014) 417-424.

[7] A. Kyaw, Spanning trees with at most 3 leaves in K1,4-free graphs, Discrete Math. 309 (2009) 6146-6148. doi:10.1016/j.disc.2009.04.023

[8] H. Matsuda, K. Ozeki and T. Yamashita, Spanning trees with a bounded number of branch vertices in a claw-free graph, Graphs Combin. 30 (2014) 429-437. doi:10.1007/s00373-012-1277-5

[9] M. Tsugaki and Y. Zhang, Spanning trees whose stems have a few leaves, Ars Com- bin. CXIV (2014) 245-256.