Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_3_a18, author = {Yan, Zheng}, title = {Spanning {Trees} whose {Stems} have a {Bounded} {Number} of {Branch} {Vertices}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {773--778}, publisher = {mathdoc}, volume = {36}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a18/} }
Yan, Zheng. Spanning Trees whose Stems have a Bounded Number of Branch Vertices. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 773-778. http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a18/
[1] E. Flandrin, T. Kaiser, R. Kužel, H. Li and Z. Ryjǎćek, Neighborhood unions and extremal spanning trees, Discrete Math. 308 (2008) 2343-2350. doi:10.1016/j.disc.2007.04.071
[2] L. Gargano and M. Hammar, There are spanning spiders in dense graphs (and we know how to find them), Lect. Notes Comput. Sci. 2719 (2003) 802-816. doi:10.1007/3-540-45061-0 63
[3] L. Gargano, M. Hammar, P. Hell, L. Stacho and U. Vaccaro, Spanning spiders and light-splitting switchs, Discrete Math. 285 (2004) 83-95. doi:10.1016/j.disc.2004.04.005
[4] L. Gargano, P. Hell, L. Stacho and U. Vaccaro, Spanning trees with bounded number of branch vertices, Lect. Notes Comput. Sci. 2380 (2002) 355-365. doi:10.1007/3-540-45465-9 31
[5] M. Kano, M. Tsugaki and G. Yan, Spanning trees whose stems have bounded degrees, preprint.
[6] M. Kano and Z. Yan, Spanning trees whose stems have at most k leaves, Ars Combin. CXIVII (2014) 417-424.
[7] A. Kyaw, Spanning trees with at most 3 leaves in K1,4-free graphs, Discrete Math. 309 (2009) 6146-6148. doi:10.1016/j.disc.2009.04.023
[8] H. Matsuda, K. Ozeki and T. Yamashita, Spanning trees with a bounded number of branch vertices in a claw-free graph, Graphs Combin. 30 (2014) 429-437. doi:10.1007/s00373-012-1277-5
[9] M. Tsugaki and Y. Zhang, Spanning trees whose stems have a few leaves, Ars Com- bin. CXIV (2014) 245-256.