Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_3_a16, author = {M\'esz\'aros, G\'abor}, title = {On {Path-Pairability} in the {Cartesian} {Product} of {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {743--758}, publisher = {mathdoc}, volume = {36}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a16/} }
Mészáros, Gábor. On Path-Pairability in the Cartesian Product of Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 743-758. http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a16/
[1] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (J. Wiley & Sons, New York, 2000).
[2] W.-S. Chiue and B.-S. Shieh, On connectivity of the Cartesian product of two graphs, Appl. Math. Comput. 102 (1999) 129-137. doi:10.1016/S0096-3003(98)10041-3
[3] L. Csaba, R.J. Faudree, A. Gyárfás, J. Lehel and R.H. Schelp, Networks communi- cating for each pairing of terminals, Networks 22 (1992) 615-626. doi:10.1002/net.3230220702
[4] R.J. Faudree, Properties in pairable graphs, New Zealand J. Math. 21 (1992) 91-106.
[5] R.J. Faudree, Some strong variations of connectivity, in: Combinatorics, Paul Erdős is Eighty, Bolyai Soc. Math. Stud. 1 (1993) 125-144.
[6] R.J. Faudree, A. Gyárfás and J. Lehel, Minimal path pairable graphs, Congr. Numer. 88 (1992) 111-128.
[7] R.J. Faudree, A. Gyárfás and J. Lehel, Three-regular path pairable graphs, Graphs Combin. 8 (1992) 45-52. doi:10.1007/BF01271707
[8] R.J. Faudree, A. Gyárfás and J. Lehel, Path-pairable graphs, J. Combin. Math. Combin. Comput. 29 (1999) 145-157.
[9] E. Kubicka, G. Kubicki and J. Lehel, Path-pairable property for complete grids, Combin. Graph Theory Algorithms 1 (1999) 577-586.
[10] G. Mésáros, On linkedness in the Cartesian product of graphs, Period. Math. Hungar., to appear. doi:10.1007/s10998-016-0113-8
[11] G. Mészáros, Note on the diameter of path-pairable graphs, Discrete Math. 337 (2014) 83-86. doi:10.1016/j.disc.2014.08.011
[12] J. Xu and C. Yang, Connectivity of Cartesian product graphs, Discrete Math. 306 (2006) 159-165. doi:10.1016/j.disc.2005.11.010