Sum List Edge Colorings of Graphs
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 709-722

Voir la notice de l'article provenant de la source Library of Science

Let G = (V,E) be a simple graph and for every edge ℯ∈ E let L(e) be a set (list) of available colors. The graph G is called L-edge colorable if there is a proper edge coloring c of G with c(ℯ ) ∈ L( ℯ ) for all ℯ∈ E. A function f : E →ℕ is called an edge choice function of G and G is said to be f-edge choosable if G is L-edge colorable for every list assignment L with |L( ℯ )| = f( ℯ ) for all ℯ∈ E. Set size(f) = Σ_ℯ∈ E f(e) and define the sum choice index χ_sc^' (G) as the minimum of size (f) over all edge choice functions f of G. There exists a greedy coloring of the edges of G which leads to the upper bound χ_sc^′ (G) ≤ 1/2 Σ_ v ∈ V d(v)^2. A graph is called sec-greedy if its sum choice index equals this upper bound. We present some general results on the sum choice index of graphs including a lower bound and we determine this index for several classes of graphs. Moreover, we present classes of sec-greedy graphs as well as all such graphs of order at most 5.
Keywords: sum list edge coloring, sum choice index, sum list coloring, sum choice number, choice function, line graph
@article{DMGT_2016_36_3_a14,
     author = {Kemnitz, Arnfried and Marangio, Massimiliano and Voigt, Margit},
     title = {Sum {List} {Edge} {Colorings} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {709--722},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a14/}
}
TY  - JOUR
AU  - Kemnitz, Arnfried
AU  - Marangio, Massimiliano
AU  - Voigt, Margit
TI  - Sum List Edge Colorings of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 709
EP  - 722
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a14/
LA  - en
ID  - DMGT_2016_36_3_a14
ER  - 
%0 Journal Article
%A Kemnitz, Arnfried
%A Marangio, Massimiliano
%A Voigt, Margit
%T Sum List Edge Colorings of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 709-722
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a14/
%G en
%F DMGT_2016_36_3_a14
Kemnitz, Arnfried; Marangio, Massimiliano; Voigt, Margit. Sum List Edge Colorings of Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 709-722. http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a14/