Nordhaus-Gaddum-Type Results for Resistance Distance-Based Graph Invariants
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 695-707.

Voir la notice de l'article provenant de la source Library of Science

Two decades ago, resistance distance was introduced to characterize “chemical distance” in (molecular) graphs. In this paper, we consider three resistance distance-based graph invariants, namely, the Kirchhoff index, the additive degree-Kirchhoff index, and the multiplicative degree-Kirchhoff index. Some Nordhaus-Gaddum-type results for these three molecular structure descriptors are obtained. In addition, a relation between these Kirchhoffian indices is established.
Keywords: resistance distance, Kirchhoff index, additive degree-Kirchhoff index, multiplicative degree-Kirchhoff index, Nordhaus-Gaddum-type result
@article{DMGT_2016_36_3_a13,
     author = {Das, Kinkar Ch. and Yang, Yujun and Xu, Kexiang},
     title = {Nordhaus-Gaddum-Type {Results} for {Resistance} {Distance-Based} {Graph} {Invariants}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {695--707},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a13/}
}
TY  - JOUR
AU  - Das, Kinkar Ch.
AU  - Yang, Yujun
AU  - Xu, Kexiang
TI  - Nordhaus-Gaddum-Type Results for Resistance Distance-Based Graph Invariants
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 695
EP  - 707
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a13/
LA  - en
ID  - DMGT_2016_36_3_a13
ER  - 
%0 Journal Article
%A Das, Kinkar Ch.
%A Yang, Yujun
%A Xu, Kexiang
%T Nordhaus-Gaddum-Type Results for Resistance Distance-Based Graph Invariants
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 695-707
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a13/
%G en
%F DMGT_2016_36_3_a13
Das, Kinkar Ch.; Yang, Yujun; Xu, Kexiang. Nordhaus-Gaddum-Type Results for Resistance Distance-Based Graph Invariants. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 695-707. http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a13/

[1] D. Bonchev, A.T. Balaban, X. Liu and D.J. Klein, Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances, Int. J. Quantum Chem. 50 (1994) 1-20. doi:10.1002/qua.560500102

[2] H. Chen and F. Zhang, Resistance distance and the normalized Laplacian spectrum, Discrete Appl. Math. 155 (2007) 654-661. doi:10.1016/j.dam.2006.09.008

[3] H. Chen and F. Zhang, Resistance distance local rules, J. Math. Chem. 44 (2008) 405-417. doi:10.1007/s10910-007-9317-8

[4] P. Dankelmann, H.C. Swart and P. van den Berg, Diameter and inverse degree, Discrete Math. 308 (2008) 670-673. doi:10.1016/j.disc.2007.07.053

[5] K.Ch. Das, I. Gutman and B. Zhou, New upper bounds on Zagreb indices, J. Math. Chem. 46 (2009) 514-521. doi:10.1007/s10910-008-9475-3

[6] R.M. Foster, The average impedance of an electrical network, in: Contributions to Applied Mechanics (Edwards Bros., Michigan, Ann Arbor, 1949) 333-340.

[7] I. Gutman, L. Feng and G. Yu, Degree resistance distance of unicyclic graphs, Trans. Comb. 1 (2012) 27-40.

[8] I. Gutman and B. Mohar, The Quasi-Wiener and the Kirchhoff indices coincide, J. Chem. Inf. Comput. Sci. 36 (1996) 982-985. doi:10.1021/ci960007t

[9] D.J. Klein, Graph geometry, graph metrics, & Wiener, MATCH Commun. Math. Comput. Chem. 35 (1997) 7-27.

[10] D.J. Klein, Centrality measure in graphs, J. Math. Chem. 47 (2010) 1209-1223. doi:10.1007/s10910-009-9635-0

[11] D.J. Klein and O. Ivanciuc, Graph cyclicity, excess conductance, and resistance deficit, J. Math. Chem. 30 (2001) 271-287. doi:10.1023/A:1015119609980

[12] D.J. Klein and M. Randić, Resistance distance, J. Math. Chem. 12 (1993) 81-95. doi:10.1007/BF01164627

[13] D.J. Klein and H.-Y. Zhu, Distances and volumina for graphs, J. Math. Chem. 23 (1998) 179-195. doi:10.1023/A:1019108905697

[14] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177. doi:10.2307/2306658

[15] J.L. Palacios and J.M. Renom, Another look at the degree-Kirchhoff index, Int. J. Quantum Chem. 111 (2011) 3453-3455. doi:10.1002/qua.22725

[16] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20. doi:10.1021/ja01193a005

[17] W. Xiao and I. Gutman, Resistance distance and Laplacian spectrum, Theor. Chem. Acc. 110 (2003) 284-289. doi:10.1007/s00214-003-0460-4

[18] Y. Yang, Relations between resistance distances of a graph and its complement or its contraction, Croat. Chem. Acta 87 (2014) 61-68. doi:10.5562/cca2318

[19] Y. Yang, H. Zhang and D.J. Klein, New Nardhaus-Gaddum-type results for the Kirchhoff index, J. Math. Chem. 49 (2011) 1587-1598. doi:10.1007/s10910-011-9845-0

[20] B. Zhou and N. Trinajstić, A note on Kirchhoff index, Chem. Phys. Lett. 455 (2008) 120-123. doi:10.1016/j.cplett.2008.02.060

[21] B. Zhou and N. Trinajstić, On resistance-distance and Kirchhoff index, J. Math. Chem. 46 (2009) 283-289. doi:10.1007/s10910-008-9459-3

[22] H.-Y. Zhu, D.J. Klein and I. Lukovits, Extensions of the Wiener number, J. Chem. Inf. Comput. Sci. 36 (1996) 420-428. doi:10.1021/ci950116s