Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_3_a13, author = {Das, Kinkar Ch. and Yang, Yujun and Xu, Kexiang}, title = {Nordhaus-Gaddum-Type {Results} for {Resistance} {Distance-Based} {Graph} {Invariants}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {695--707}, publisher = {mathdoc}, volume = {36}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a13/} }
TY - JOUR AU - Das, Kinkar Ch. AU - Yang, Yujun AU - Xu, Kexiang TI - Nordhaus-Gaddum-Type Results for Resistance Distance-Based Graph Invariants JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 695 EP - 707 VL - 36 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a13/ LA - en ID - DMGT_2016_36_3_a13 ER -
%0 Journal Article %A Das, Kinkar Ch. %A Yang, Yujun %A Xu, Kexiang %T Nordhaus-Gaddum-Type Results for Resistance Distance-Based Graph Invariants %J Discussiones Mathematicae. Graph Theory %D 2016 %P 695-707 %V 36 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a13/ %G en %F DMGT_2016_36_3_a13
Das, Kinkar Ch.; Yang, Yujun; Xu, Kexiang. Nordhaus-Gaddum-Type Results for Resistance Distance-Based Graph Invariants. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 695-707. http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a13/
[1] D. Bonchev, A.T. Balaban, X. Liu and D.J. Klein, Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances, Int. J. Quantum Chem. 50 (1994) 1-20. doi:10.1002/qua.560500102
[2] H. Chen and F. Zhang, Resistance distance and the normalized Laplacian spectrum, Discrete Appl. Math. 155 (2007) 654-661. doi:10.1016/j.dam.2006.09.008
[3] H. Chen and F. Zhang, Resistance distance local rules, J. Math. Chem. 44 (2008) 405-417. doi:10.1007/s10910-007-9317-8
[4] P. Dankelmann, H.C. Swart and P. van den Berg, Diameter and inverse degree, Discrete Math. 308 (2008) 670-673. doi:10.1016/j.disc.2007.07.053
[5] K.Ch. Das, I. Gutman and B. Zhou, New upper bounds on Zagreb indices, J. Math. Chem. 46 (2009) 514-521. doi:10.1007/s10910-008-9475-3
[6] R.M. Foster, The average impedance of an electrical network, in: Contributions to Applied Mechanics (Edwards Bros., Michigan, Ann Arbor, 1949) 333-340.
[7] I. Gutman, L. Feng and G. Yu, Degree resistance distance of unicyclic graphs, Trans. Comb. 1 (2012) 27-40.
[8] I. Gutman and B. Mohar, The Quasi-Wiener and the Kirchhoff indices coincide, J. Chem. Inf. Comput. Sci. 36 (1996) 982-985. doi:10.1021/ci960007t
[9] D.J. Klein, Graph geometry, graph metrics, & Wiener, MATCH Commun. Math. Comput. Chem. 35 (1997) 7-27.
[10] D.J. Klein, Centrality measure in graphs, J. Math. Chem. 47 (2010) 1209-1223. doi:10.1007/s10910-009-9635-0
[11] D.J. Klein and O. Ivanciuc, Graph cyclicity, excess conductance, and resistance deficit, J. Math. Chem. 30 (2001) 271-287. doi:10.1023/A:1015119609980
[12] D.J. Klein and M. Randić, Resistance distance, J. Math. Chem. 12 (1993) 81-95. doi:10.1007/BF01164627
[13] D.J. Klein and H.-Y. Zhu, Distances and volumina for graphs, J. Math. Chem. 23 (1998) 179-195. doi:10.1023/A:1019108905697
[14] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177. doi:10.2307/2306658
[15] J.L. Palacios and J.M. Renom, Another look at the degree-Kirchhoff index, Int. J. Quantum Chem. 111 (2011) 3453-3455. doi:10.1002/qua.22725
[16] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20. doi:10.1021/ja01193a005
[17] W. Xiao and I. Gutman, Resistance distance and Laplacian spectrum, Theor. Chem. Acc. 110 (2003) 284-289. doi:10.1007/s00214-003-0460-4
[18] Y. Yang, Relations between resistance distances of a graph and its complement or its contraction, Croat. Chem. Acta 87 (2014) 61-68. doi:10.5562/cca2318
[19] Y. Yang, H. Zhang and D.J. Klein, New Nardhaus-Gaddum-type results for the Kirchhoff index, J. Math. Chem. 49 (2011) 1587-1598. doi:10.1007/s10910-011-9845-0
[20] B. Zhou and N. Trinajstić, A note on Kirchhoff index, Chem. Phys. Lett. 455 (2008) 120-123. doi:10.1016/j.cplett.2008.02.060
[21] B. Zhou and N. Trinajstić, On resistance-distance and Kirchhoff index, J. Math. Chem. 46 (2009) 283-289. doi:10.1007/s10910-008-9459-3
[22] H.-Y. Zhu, D.J. Klein and I. Lukovits, Extensions of the Wiener number, J. Chem. Inf. Comput. Sci. 36 (1996) 420-428. doi:10.1021/ci950116s