Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_3_a11, author = {Mao, Yaping}, title = {The {Vertex-Rainbow} {Index} of {A} {Graph}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {669--681}, publisher = {mathdoc}, volume = {36}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a11/} }
Mao, Yaping. The Vertex-Rainbow Index of A Graph. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 669-681. http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a11/
[1] M. Aouchiche and P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Appl. Math. 161 (2013) 466-546. doi:10.1016/j.dam.2011.12.018
[2] J.A. Bondy and U.S.R. Murty, Graph Theory (Graduate Texts in Mathematics 244, Springer-Verlag, London, 2008).
[3] Q. Cai, X. Li and J. Song, Solutions to conjectures on the (k, ℓ)-rainbow index of complete graphs, Networks 62 (2013) 220-224. doi:10.1002/net.21513
[4] Q. Cai, X. Li and J. Song, The (k, ℓ)-rainbow index of random graphs, Bull. Malays. Math. Sci. Soc. 39 (2016) 765-771.
[5] Y. Caro, A. Lev, Y. Roditty, Z. Tuza and R. Yuster, On rainbow connection, Elec- tron. J. Combin. 15 (2008) #R57.
[6] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[7] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, The rainbow connectivity of a graph, Networks 54 (2009) 75-81. doi:10.1002/net.20296
[8] G. Chartrand, O.R. Oellermann, S. Tian and H.B. Zou, Steiner distance in graphs, Časopis pro pěstování matematiky 114 (1989) 399-410 .
[9] G. Chartrand, F. Okamoto and P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (2010) 360-367. doi:10.1002/net.20340
[10] L. Chen, X. Li and H. Lian, Nordhaus-Gaddum-type theorem for rainbow connection number of graphs, Graphs Combin. 29 (2013) 1235-1247. doi:10.1007/s00373-012-1183-x
[11] L. Chen, X. Li and M. Liu, Nordhaus-Gaddum-type theorem for the rainbow vertex connection number of a graph, Util. Math. 86 (2011) 335-340.
[12] L. Chen, X. Li, K. Yang and Y. Zhao, The 3-rainbow index of a graph, Discuss. Math. Graph Theory 35 (2015) 81-94. doi:10.7151/dmgt.1780
[13] X. Cheng and D. Du, Steiner Trees in Industry (Kluwer Academic Publisher, Dor- drecht, 2001).
[14] D. Du and X. Hu, Steiner Tree Problems in Computer Communication Networks (World Scientific, River Edge, 2008).
[15] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) re- ciprocal to its minimum degree, J. Graph Theory 63 (2010) 185-191. doi:10.1002/jgt.20418
[16] H. Li, X. Li, Y. Sun and Y. Zhao, Note on minimally d-rainbow connected graphs, Graphs Combin. 30 (2014) 949-955. doi:10.1007/s00373-013-1309-9
[17] X. Li, I. Schiermeyer, K. Yang and Y. Zhao, Graphs with 3-rainbow index n−1 and n − 2, Discuss. Math. Graph Theory 35 (2015) 105-120. doi:10.7151/dmgt.1783
[18] X. Li, I. Schiermeyer, K. Yang and Y. Zhao, Graphs with 4-rainbow index 3 and n − 1, Discuss. Math. Graph Theory 35 (2015) 387-398. doi:10.7151/dmgt.1794
[19] X. Li and Y. Shi, On the rainbow vertex-connection, Discuss. Math. Graph Theory 33 (2013) 307-313. doi:10.7151/dmgt.1664
[20] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1-38. doi:10.1007/s00373-012-1243-2
[21] X. Li and Y. Sun, Rainbow Connections of Graphs (SpringerBriefs in Math., Springer, New York, 2012).
[22] Y. Mao and Y. Shi, The complexity of determining the vertex-rainbow index of graphs, Discrete Math. Algorithms Appl. 7(4) (2015) 1550047. doi:10.1142/s1793830915500470
[23] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer.Math.Monthly 63 (1956) 175-177.
[24] I. Schiermeyer, On minimally rainbow k-connected graphs, Discrete Appl. Math. 161 (2013) 702-705. doi:10.1016/j.dam.2011.05.001