Large Degree Vertices in Longest Cycles of Graphs, I
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 363-382.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we consider the least integer d such that every longest cycle of a k-connected graph of order n (and of independent number α) contains all vertices of degree at least d.
Keywords: longest cycle, large degree vertices, order, connectivity, independent number
@article{DMGT_2016_36_2_a8,
     author = {Li, Binlong and Xiong, Liming and Yin, Jun},
     title = {Large {Degree} {Vertices} in {Longest} {Cycles} of {Graphs,} {I}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {363--382},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a8/}
}
TY  - JOUR
AU  - Li, Binlong
AU  - Xiong, Liming
AU  - Yin, Jun
TI  - Large Degree Vertices in Longest Cycles of Graphs, I
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 363
EP  - 382
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a8/
LA  - en
ID  - DMGT_2016_36_2_a8
ER  - 
%0 Journal Article
%A Li, Binlong
%A Xiong, Liming
%A Yin, Jun
%T Large Degree Vertices in Longest Cycles of Graphs, I
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 363-382
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a8/
%G en
%F DMGT_2016_36_2_a8
Li, Binlong; Xiong, Liming; Yin, Jun. Large Degree Vertices in Longest Cycles of Graphs, I. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 363-382. http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a8/

[1] B. Bollobás and G. Brightwell, Cycles through specified vertices, Combinatorica 13 (1993) 147-155. doi:10.1007/BF01303200

[2] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer-Verlag, London, 2008).

[3] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111-113. doi:10.1016/0012-365X(72)90079-9

[4] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. (3)2 (1952) 69-81. doi:10.1112/plms/s3-2.1.69

[5] M. Kouider, Cycles in graphs with prescribed stability number and connectivity, J. Combin. Theory Ser. B 60 (1994) 315-318. doi:10.1006/jctb.1994.1023

[6] B. Li and S. Zhang, Forbidden subgraphs for longest cycles to contain vertices with large degree, Discrete Math. 338 (2015) 1681-1689. doi:10.1016/j.disc.2014.07.003

[7] D. Paulusma and K. Yoshimoto, Cycles through specified vertices in triangle-free graphs, Discuss. Math. Graph Theory 27 (2007) 179-191. doi:10.7151/dmgt.1354

[8] A. Saito, Long cycles through specified vertices in a graph, J. Combin. Theory Ser. B 47 (1989) 220-230. doi:10.1016/0095-8956(89)90021-X

[9] R. Shi, 2-neighborhoods and Hamiltonian conditions, J. Graph Theory 16 (1992) 267-271. doi:10.1002/jgt.3190160310

[10] S. O, D.B. West and H. Wu, Longest cycles in k-connected graphs with given inde- pendence number, J. Combin. Theory Ser. B 101 (2011) 480-485. doi:10.1016/j.jctb.2011.02.005