Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_2_a8, author = {Li, Binlong and Xiong, Liming and Yin, Jun}, title = {Large {Degree} {Vertices} in {Longest} {Cycles} of {Graphs,} {I}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {363--382}, publisher = {mathdoc}, volume = {36}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a8/} }
TY - JOUR AU - Li, Binlong AU - Xiong, Liming AU - Yin, Jun TI - Large Degree Vertices in Longest Cycles of Graphs, I JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 363 EP - 382 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a8/ LA - en ID - DMGT_2016_36_2_a8 ER -
Li, Binlong; Xiong, Liming; Yin, Jun. Large Degree Vertices in Longest Cycles of Graphs, I. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 363-382. http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a8/
[1] B. Bollobás and G. Brightwell, Cycles through specified vertices, Combinatorica 13 (1993) 147-155. doi:10.1007/BF01303200
[2] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer-Verlag, London, 2008).
[3] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111-113. doi:10.1016/0012-365X(72)90079-9
[4] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. (3)2 (1952) 69-81. doi:10.1112/plms/s3-2.1.69
[5] M. Kouider, Cycles in graphs with prescribed stability number and connectivity, J. Combin. Theory Ser. B 60 (1994) 315-318. doi:10.1006/jctb.1994.1023
[6] B. Li and S. Zhang, Forbidden subgraphs for longest cycles to contain vertices with large degree, Discrete Math. 338 (2015) 1681-1689. doi:10.1016/j.disc.2014.07.003
[7] D. Paulusma and K. Yoshimoto, Cycles through specified vertices in triangle-free graphs, Discuss. Math. Graph Theory 27 (2007) 179-191. doi:10.7151/dmgt.1354
[8] A. Saito, Long cycles through specified vertices in a graph, J. Combin. Theory Ser. B 47 (1989) 220-230. doi:10.1016/0095-8956(89)90021-X
[9] R. Shi, 2-neighborhoods and Hamiltonian conditions, J. Graph Theory 16 (1992) 267-271. doi:10.1002/jgt.3190160310
[10] S. O, D.B. West and H. Wu, Longest cycles in k-connected graphs with given inde- pendence number, J. Combin. Theory Ser. B 101 (2011) 480-485. doi:10.1016/j.jctb.2011.02.005