Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_2_a6, author = {Jendrol, Stanislav and Macekov\'a, M\'aria and Montassier, Micka\"el and Sot\'ak, Roman}, title = {3-Paths in {Graphs} with {Bounded} {Average} {Degree}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {339--353}, publisher = {mathdoc}, volume = {36}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a6/} }
TY - JOUR AU - Jendrol, Stanislav AU - Maceková, Mária AU - Montassier, Mickaël AU - Soták, Roman TI - 3-Paths in Graphs with Bounded Average Degree JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 339 EP - 353 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a6/ LA - en ID - DMGT_2016_36_2_a6 ER -
%0 Journal Article %A Jendrol, Stanislav %A Maceková, Mária %A Montassier, Mickaël %A Soták, Roman %T 3-Paths in Graphs with Bounded Average Degree %J Discussiones Mathematicae. Graph Theory %D 2016 %P 339-353 %V 36 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a6/ %G en %F DMGT_2016_36_2_a6
Jendrol, Stanislav; Maceková, Mária; Montassier, Mickaël; Soták, Roman. 3-Paths in Graphs with Bounded Average Degree. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 339-353. http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a6/
[1] K. Ando, S. Iwasaki and A. Kaneko, Every 3-connected planar graph has a connected subgraph with small degree sum, in: Annual Meeting of Mathematical Society of Japan, (1993), in Japanese.
[2] P. Bose, M. Smid and D.R. Wood, Light edges in degree-constrained graphs, Discrete Math. 28 (2004) 35-41. doi:10.1016/j.disc.2003.12.003
[3] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).
[4] O.V. Borodin, A.O. Ivanova, T.R. Jensen, A.V. Kostochka and M. Yancey, Describ- ing 3-paths in normal plane maps, Discrete Math. 313 (2013) 2702-2711. doi:10.1016/j.disc.2013.08.018
[5] O.V. Borodin, A.V. Kostochka, J. Nešetřil, A. Raspaud and E. Sopena, On the maximum average degree and the oriented chromatic number of a graph, Discrete Math. 206 (1999) 77-89. doi:10.1016/S0012-365X(98)00393-8
[6] D.W. Cranston and D.B.West, A guide to the discharging method, arXiv: 1306.4434 [math.CO] 19 Jun 2013.
[7] S. Jendrol′, A structural property of convex 3-polytopes, Geom. Dedicata 68 (1997) 91-99. doi:10.1023/A:1004993723280
[8] S. Jendrol′ and M. Maceková, Describing short paths in plane graphs of girth at least 5, Discrete Math. 338 (2015) 149-158. doi:10.1016/j.disc.2014.09.014
[9] S. Jendrol′, M. Maceková and R. Soták, Note on 3-paths in plane graphs of girth 4, Discrete Math. 338 (2015) 1643-1648. doi:10.1016/j.disc.2015.04.011