Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_2_a4, author = {Galeana-\'Sanchez, Hortensia and S\'anchez-L\'opez, Roc{\'\i}o}, title = {Kernels by {Monochromatic} {Paths} and {Color-Perfect} {Digraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {309--321}, publisher = {mathdoc}, volume = {36}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a4/} }
TY - JOUR AU - Galeana-Śanchez, Hortensia AU - Sánchez-López, Rocío TI - Kernels by Monochromatic Paths and Color-Perfect Digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 309 EP - 321 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a4/ LA - en ID - DMGT_2016_36_2_a4 ER -
Galeana-Śanchez, Hortensia; Sánchez-López, Rocío. Kernels by Monochromatic Paths and Color-Perfect Digraphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 309-321. http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a4/
[1] P. Arpin and V. Linek, Reachability problems in edge-colored digraphs, Discrete Math. 307 (2007) 2276-2289. doi:10.1016/j.disc.2006.09.042
[2] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2000).
[3] C. Berge, Graphs (North-Holland, Amsterdan, 1989).
[4] C. Berge and P. Duchet, Perfect graphs and kernels, Bull. Inst. Math. Acad. Sin. 16 (1988) 263-274.
[5] C. Berge and P. Duchet, Recent problems and results about kernels in directed graphs, Discrete Math. 86 (1990) 27-31. doi:10.1016/0012-365X(90)90346-J
[6] E. Boros and V. Gurvich, Perfect graphs, kernels and cores of cooperative games, RUTCOR Research Report 12 (Rutgers University, April 2003).
[7] V. Chvátal, On the computational complexity of finding a kernel, Report CRM300, Centre de Recherches Mathématiques (Université de Montréal, 1973).
[8] P. Duchet, Graphes noyau-parfaits, Ann. Discrete Math. 9 (1980) 93-101. doi:10.1016/S0167-5060(08)70041-4
[9] A.S. Fraenkel, Planar Kernel and Grundy with d ≤ 3, dout ≤ 2, din ≤ 2, are NP- complete, Discrete Appl. Math. 3 (1981) 257-262. doi:10.1016/0166-218X(81)90003-2
[10] A.S. Fraenkel, Combinatorial games: Selected bibliography with a succinct gourmet introduction, Electron J. Combin. 14 (2009) DS2.
[11] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76. doi:10.1016/0012-365X(84)90131-6
[12] H. Galeana-Sánchez, On monochromatic paths and monochromatic cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103-112. doi:10.1016/0012-365X(95)00036-V
[13] H. Galeana-Sánchez, Kernels in edge coloured digraphs, Discrete Math. 184 (1998) 87-99. doi:10.1016/S0012-365X(97)00162-3
[14] H. Galeana-Sánchez, Kernels by monochromatic paths and the color-class digraph, Discuss. Math. Graph Theory 31 (2011) 273-281. doi:10.7151/dmgt.1544
[15] H. Galeana-Sánchez and R. Rojas-Monroy, A counterexample to a conjecture on edge-coloured tornaments, Discrete Math. 282 (2004) 275-276. doi:10.1016/j.disc.2003.11.015
[16] S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. The- ory Ser. B 45 (1988) 108-111. doi:10.1016/0095-8956(88)90059-7
[17] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944).
[18] V. Neumann-Lara, Seminúcleos de una digráfica, An. Inst. Mat. 11 (1971) 55-62.
[19] M. Richardson, Solutions of irreflexive relations, Ann. of Math. (2) 58 (1953) 573-590. doi:10.2307/1969755
[20] M. Richardson, Extensions theorems for solutions of irreflexive relations, Proc. Natl. Acad. Sci. USA 39 (1953) 649-655. doi:10.1073/pnas.39.7.649
[21] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge coloured digraphs, J. Combin. Theory Ser. B 33 (1982) 271-275. doi:10.1016/0095-8956(82)90047-8