The Quest for A Characterization of Hom-Properties of Finite Character
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 479-500

Voir la notice de l'article provenant de la source Library of Science

A graph property is a set of (countable) graphs. A homomorphism from a graph G to a graph H is an edge-preserving map from the vertex set of G into the vertex set of H; if such a map exists, we write G → H. Given any graph H, the hom-property → H is the set of H-colourable graphs, i.e., the set of all graphs G satisfying G → H. A graph property mathcalP is of finite character if, whenever we have that F ∈𝒫 for every finite induced subgraph F of a graph G, then we have that G ∈𝒫 too. We explore some of the relationships of the property attribute of being of finite character to other property attributes such as being finitely-induced-hereditary, being finitely determined, and being axiomatizable. We study the hom-properties of finite character, and prove some necessary and some sufficient conditions on H for → H to be of finite character. A notable (but known) sufficient condition is that H is a finite graph, and our new model-theoretic proof of this compactness result extends from hom-properties to all axiomatizable properties. In our quest to find an intrinsic characterization of those H for which → H is of finite character, we find an example of an infinite connected graph with no finite core and chromatic number 3 but with hom-property not of finite character.
Keywords: (countable) graph, homomorphism (of graphs), property of graphs, hom-property, (finitely-)induced-hereditary property, finitely determined property, (weakly) finite character, axiomatizable property, compactness theorems, core, connectedness, chromatic number, clique number, independence number, dominating set
@article{DMGT_2016_36_2_a17,
     author = {Broere, Izak and Matsoha, Moroli D.V. and Heidema, Johannes},
     title = {The {Quest} for {A} {Characterization} of {Hom-Properties} of {Finite} {Character}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {479--500},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a17/}
}
TY  - JOUR
AU  - Broere, Izak
AU  - Matsoha, Moroli D.V.
AU  - Heidema, Johannes
TI  - The Quest for A Characterization of Hom-Properties of Finite Character
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 479
EP  - 500
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a17/
LA  - en
ID  - DMGT_2016_36_2_a17
ER  - 
%0 Journal Article
%A Broere, Izak
%A Matsoha, Moroli D.V.
%A Heidema, Johannes
%T The Quest for A Characterization of Hom-Properties of Finite Character
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 479-500
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a17/
%G en
%F DMGT_2016_36_2_a17
Broere, Izak; Matsoha, Moroli D.V.; Heidema, Johannes. The Quest for A Characterization of Hom-Properties of Finite Character. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 479-500. http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a17/