Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_2_a17, author = {Broere, Izak and Matsoha, Moroli D.V. and Heidema, Johannes}, title = {The {Quest} for {A} {Characterization} of {Hom-Properties} of {Finite} {Character}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {479--500}, publisher = {mathdoc}, volume = {36}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a17/} }
TY - JOUR AU - Broere, Izak AU - Matsoha, Moroli D.V. AU - Heidema, Johannes TI - The Quest for A Characterization of Hom-Properties of Finite Character JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 479 EP - 500 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a17/ LA - en ID - DMGT_2016_36_2_a17 ER -
%0 Journal Article %A Broere, Izak %A Matsoha, Moroli D.V. %A Heidema, Johannes %T The Quest for A Characterization of Hom-Properties of Finite Character %J Discussiones Mathematicae. Graph Theory %D 2016 %P 479-500 %V 36 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a17/ %G en %F DMGT_2016_36_2_a17
Broere, Izak; Matsoha, Moroli D.V.; Heidema, Johannes. The Quest for A Characterization of Hom-Properties of Finite Character. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 479-500. http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a17/
[1] B.L. Bauslaugh, Core-like properties of infinite graphs and structures, Discrete Math. 138 (1995) 101-111. doi:10.1016/0012-365X(94)00191-K
[2] B.L. Bauslaugh, Cores and compactness of infinite directed graphs, J. Combin. Theory Ser. B 68 (1996) 255-276.
[3] B.L. Bauslaugh, List-Compactness of directed graphs, Graphs Combin. 17 (2001) 17-38. doi:10.1007/s003730170052
[4] M. Borowiecki, I. Broere, M. Frick, G. Semanišin and P. Mihók, A survey of hered- itary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50. doi:10.7151/dmgt.1037
[5] J. Bucko and P. Mihók, On infinite uniquely partitionable graphs and graph proper- ties of finite character, Discuss. Math. Graph Theory 29 (2009) 241-251. doi:10.7151/dmgt.1444
[6] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, Fifth Edition (CRC Press, Boca Raton, 2011).
[7] R. Cowen, S.H. Hechler and P. Mihók, Graph coloring compactness theorems, Sci. Math. Jpn. 56 (2002) 171-180.
[8] B.A. Davey and H.A. Priestly, Introduction to Lattices and Order, Second Edition (Cambridge University Press, New York, 2008).
[9] N.G. de Bruijn and P. Erdős, A colour problem for infinite graphs and a problem in the theory of relations, Indag. Math. 13 (1951) 371-373. doi:10.1016/S1385-7258(51)50053-7
[10] R. Diestel, Graph Theory, Fourth Edition (Graduate Texts in Mathematics 173, Springer, Heidelberg, 2010). doi:10.1007/978-3-642-14279-6
[11] J.H. Hattingh, Relatiewe semantiese afleibaarheid [Relative semantical entailment] (Master’s dissertation (in Afrikaans), Rand Afrikaans University, Johannesburg, 1985).
[12] T.W. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998).
[13] P. Hell and J. Nešetřil, Graphs and Homomorphisms (Oxford University Press, Oxford, 2004).
[14] W. Hodges, First-order Model Theory (The Stanford Encyclopedia of Philosophy (Summer 2009 Edition), E.N. Zalta (Ed.), 2009). http://plato.stanford.edu/archives/sum2009/entries/modeltheory-fol
[15] R. Kellerman, private communication.
[16] A. Robinson, Introduction to Model Theory and to the Metamathematics of Algebra (North-Holland, Amsterdam, 1963).
[17] A. Salomaa, On color-families of graphs, Ann. Acad. Sci. Fenn. Math. 6 (1981) 135-148. doi:10.5186/aasfm.1981.0619
[18] E. Welzl, Color-families are dense, Theoret. Comput. Sci. 17 (1982) 29-41. doi:10.1016/0304-3975(82)90129-3