The Existence of Quasi Regular and Bi-Regular Self-Complementary 3-Uniform Hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 419-426.

Voir la notice de l'article provenant de la source Library of Science

A k-uniform hypergraph H = (V; E) is called self-complementary if there is a permutation σ : V → V, called a complementing permutation, such that for every k-subset e of V, e ∈ E if and only if σ(e) ∉ E. In other words, H is isomorphic with H′ = (V ; V(k) − E). In this paper we define a bi-regular hypergraph and prove that there exists a bi-regular self-complementary 3-uniform hypergraph on n vertices if and only if n is congruent to 0 or 2 modulo 4. We also prove that there exists a quasi regular self-complementary 3-uniform hypergraph on n vertices if and only if n is congruent to 0 modulo 4.
Keywords: self-complementary hypergraph, uniform hypergraph, regular hypergraph, quasi regular hypergraph, bi-regular hypergraph
@article{DMGT_2016_36_2_a12,
     author = {Kamble, Lata N. and Deshpande, Charusheela M. and Bam, Bhagyashree Y.},
     title = {The {Existence} of {Quasi} {Regular} and {Bi-Regular} {Self-Complementary} {3-Uniform} {Hypergraphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {419--426},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a12/}
}
TY  - JOUR
AU  - Kamble, Lata N.
AU  - Deshpande, Charusheela M.
AU  - Bam, Bhagyashree Y.
TI  - The Existence of Quasi Regular and Bi-Regular Self-Complementary 3-Uniform Hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 419
EP  - 426
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a12/
LA  - en
ID  - DMGT_2016_36_2_a12
ER  - 
%0 Journal Article
%A Kamble, Lata N.
%A Deshpande, Charusheela M.
%A Bam, Bhagyashree Y.
%T The Existence of Quasi Regular and Bi-Regular Self-Complementary 3-Uniform Hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 419-426
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a12/
%G en
%F DMGT_2016_36_2_a12
Kamble, Lata N.; Deshpande, Charusheela M.; Bam, Bhagyashree Y. The Existence of Quasi Regular and Bi-Regular Self-Complementary 3-Uniform Hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 419-426. http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a12/

[1] B. Alspach, On point-symmetric tournaments, Canad. Math. Bull. 13 (1970) 317-323. doi:10.4153/CMB-1970-061-7

[2] C.J. Colbourn and J.H. Dinitz, The CRC Handbook of Combinatorial Designs (CRC Press, Boca Raton, 1996).

[3] A. Hartman, Halving the complete design, Ann. Discrete Math. 34 (1987) 207-224. doi:10.1016/s0304-0208(08)72888-3

[4] M. Knor and P. Potočnik, A note on 2-subset-regular self-complementary 3-uniform hypergraphs, Ars Combin. 11 (2013) 33-36.

[5] W. Kocay, Reconstructing graphs as subsumed graphs of hypergraphs, and some self- complementary triple systems, Graphs Combin. 8 (1992) 259-276. doi:10.1007/BF02349963

[6] P. Potočnik and M. Šajana, The existence of regular self-complementary 3-uniform hypergraphs, Discrete Math. 309 (2009) 950-954. doi:10.1016/j.disc.2008.01.026

[7] G. Ringel, Selbstkomplementäre Graphen, Arch. Math. 14 (1963) 354-358. doi:10.1007/BF01234967

[8] H. Sachs, Über selbstkomplementäre Graphen, Publ. Math. Debrecen 9 (1962) 270-288.

[9] A. Szymański and A.P.Wojda, A note on k-uniform self-complementary hypergraphs of given order, Discuss. Math. Graph Theory 29 (2009) 199-202. doi:10.7151/dmgt.1440