Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_2_a10, author = {Gutierrez, Marisa and Tondato, Silvia B.}, title = {End {Simplicial} {Vertices} in {Path} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {393--408}, publisher = {mathdoc}, volume = {36}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a10/} }
Gutierrez, Marisa; Tondato, Silvia B. End Simplicial Vertices in Path Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 393-408. http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a10/
[1] J.R.S. Blair and B.W. Peyton, On finding minimum-diameter clique trees, Nordic J. Comput. 1 (1994) 173-201.
[2] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Combin. Theory Ser. B 16 (1974) 47-56. doi:10.1016/0095-8956(74)90094-X
[3] J. Gimbel, End vertices in interval graphs, Discrete Appl. Math. 21 (1988) 257-259. doi:10.1016/0166-218X(88)90071-6
[4] B. Lévêque, F. Maffray and M. Preissmann, Characterizing path graphs by forbidden induced subgraphs, J. Graph Theory 62 (2009) 369-384. doi:10.1002/jgt.20407
[5] C. Monma and V. Wei, Intersection graphs of paths in a tree, J. Combin. Theory Ser. B 41 (1986) 141-181. doi:10.1016/0095-8956(86)90042-0
[6] Y. Shibata, On the tree representation of chordal graphs, J. Graph Theory 12 (1988) 421-428. doi:10.1002/jgt.3190120313
[7] J.R.Walter, Representations of chordal graphs as subtrees of a tree, J. Graph Theory 2 (1978) 265-267. doi:10.1002/jgt.3190020311