End Simplicial Vertices in Path Graphs
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 393-408

Voir la notice de l'article provenant de la source Library of Science

A graph is a path graph if there is a tree, called UV -model, whose vertices are the maximal cliques of the graph and for each vertex x of the graph the set of maximal cliques that contains it induces a path in the tree. A graph is an interval graph if there is a UV -model that is a path, called an interval model. Gimbel [3] characterized those vertices in interval graphs for which there is some interval model where the interval corresponding to those vertices is an end interval. In this work, we give a characterization of those simplicial vertices x in path graphs for which there is some UV -model where the maximal clique containing x is a leaf in this UV -model.
Keywords: chordal graphs, clique trees, path graphs
@article{DMGT_2016_36_2_a10,
     author = {Gutierrez, Marisa and Tondato, Silvia B.},
     title = {End {Simplicial} {Vertices} in {Path} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {393--408},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a10/}
}
TY  - JOUR
AU  - Gutierrez, Marisa
AU  - Tondato, Silvia B.
TI  - End Simplicial Vertices in Path Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 393
EP  - 408
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a10/
LA  - en
ID  - DMGT_2016_36_2_a10
ER  - 
%0 Journal Article
%A Gutierrez, Marisa
%A Tondato, Silvia B.
%T End Simplicial Vertices in Path Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 393-408
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a10/
%G en
%F DMGT_2016_36_2_a10
Gutierrez, Marisa; Tondato, Silvia B. End Simplicial Vertices in Path Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 393-408. http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a10/