@article{DMGT_2016_36_2_a1,
author = {Szab\'o, P\'eter G.N.},
title = {Bounds on the {Number} of {Edges} of {Edge-Minimal,} {Edge-Maximal} and {L-Hypertrees}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {259--278},
year = {2016},
volume = {36},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a1/}
}
Szabó, Péter G.N. Bounds on the Number of Edges of Edge-Minimal, Edge-Maximal and L-Hypertrees. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 259-278. http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a1/
[1] Z. Baranyai, On the factorization of the complete uniform hypergraph, in: A. Hajnal, R. Rado and V.T. S´os (Eds.), Proceedings of a Colloquium held at Keszthely, June 25-July 1, 1973, Infinite and Finite Sets 1 (North-Holland, Amsterdam, 1975) 91-108.
[2] C. Berge, Hypergraphs (North-Holland, Amsterdam, 1989).
[3] D. de Caen, Extension of a theorem of Moon and Moser on complete subgraphs, Ars Combin. 16 (1983) 5-10.
[4] H. Hanani, On quadruple systems, Canad. J. Math. 12 (1960) 145-157. doi:10.4153/CJM-1960-013-3
[5] G.Y. Katona and H. Kierstead, Hamiltonian chains in hypergraphs, J. Graph Theory 30 (1999) 205-212. doi:10.1002/(SICI)1097-0118(199903)30:3h205::AID-JGT5i3.0.CO;2-O
[6] G.Y. Katona and P.G.N. Szab´o, Bounds on the number of edges in hypertrees. arXiv:1404.6430 [math.CO] (2014).
[7] P. Keevash, The existence of designs. arXiv:1401.3665 [math.CO] (2014).
[8] J.X. Lu, An existence theory for resolvable balanced incomplete block designs, Acta Math. Sinica 27 (1984) 458-468.
[9] D.K. Ray-Chaudhuri and R.M. Wilson, The existence of resolvable block designs, in: J.N. Srivastava (Ed.), A Survey of Combinatorial Theory (North-Holland, Amsterdam, 1973) 361-375. doi:10.1016/b978-0-7204-2262-7.50035-1