Hamiltonicity and Generalised Total Colourings of Planar Graphs
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 243-257.

Voir la notice de l'article provenant de la source Library of Science

The total generalised colourings considered in this paper are colourings of graphs such that the vertices and edges of the graph which receive the same colour induce subgraphs from two prescribed hereditary graph properties while incident elements receive different colours. The associated total chromatic number is the least number of colours with which this is possible. We study such colourings for sets of planar graphs and determine, in particular, upper bounds for these chromatic numbers for proper colourings of the vertices while the monochromatic edge sets are allowed to be forests. We also prove that if an even planar triangulation has a Hamilton cycle H for which there is no cycle among the edges inside H, then such a graph needs at most four colours for a total colouring as described above. The paper is concluded with some conjectures and open problems.
Keywords: even planar triangulation, total colouring, Hamilton cycle, hereditary property
@article{DMGT_2016_36_2_a0,
     author = {Borowiecki, Mieczys{\l}aw and Broere, Izak},
     title = {Hamiltonicity and {Generalised} {Total} {Colourings} of {Planar} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {243--257},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a0/}
}
TY  - JOUR
AU  - Borowiecki, Mieczysław
AU  - Broere, Izak
TI  - Hamiltonicity and Generalised Total Colourings of Planar Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 243
EP  - 257
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a0/
LA  - en
ID  - DMGT_2016_36_2_a0
ER  - 
%0 Journal Article
%A Borowiecki, Mieczysław
%A Broere, Izak
%T Hamiltonicity and Generalised Total Colourings of Planar Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 243-257
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a0/
%G en
%F DMGT_2016_36_2_a0
Borowiecki, Mieczysław; Broere, Izak. Hamiltonicity and Generalised Total Colourings of Planar Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 243-257. http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a0/

[1] O.V. Borodin, On acyclic colorings of planar graphs, Discrete Math. 25 (1979) 211-236. doi:10.1016/0012-365X(79)90077-3

[2] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Acyclic colourings of planar graphs with large girth, J. Lond. Math. Soc. 60 (1999) 344-352. doi:10.1112/S0024610799007942

[3] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50. doi:10.7151/dmgt.1037

[4] M. Borowiecki, A. Kemnitz, M. Marangio and P. Mihók, Generalized total colorings of graphs, Discuss. Math. Graph Theory 31 (2011) 209-222. doi:10.7151/dmgt.1540

[5] G. Chartrand, H.V. Kronk and C.E. Wall, The point-arboricity of a graph, Israel J. Math. 6 (1968) 169-175. doi:10.1007/BF02760181

[6] R. Diestel, Graph Theory (Springer-Verlag, Berlin, 1997).

[7] G. Ding, B. Oporowski, D.P. Sanders and D. Vertigan, Surfaces, tree-width, cliqueminors, and partitions, J. Combin. Theory Ser. B 79 (2000) 221-246.

[8] R.B. Eggleton, Rectilinear drawings of graphs, Util. Math. 29 (1986) 149-172. doi:10.1006/jetb.2000.1962

[9] A.V. Kostochka and L.S. Mel′nikov, Note to the paper of Gr¨unbaum on acyclic colorings, Discrete Math. 14 (1976) 403-406. doi:10.1016/0012-365X(76)90075-3

[10] M. Król, On a sufficient and necessary condition of 3-colorableness for the planar graphs I, Pr. Nauk. Inst. Mat. Fiz. Teoret. PWr. 6 (1972) 37-40.

[11] G. Ringel, Ein sechsfarbenproblem auf der Kugel, Abh. Math. Semin. Univ. Hambg. 29 (1965) 107-117. doi:10.1007/BF02996313

[12] G. Ringel, Two trees in maximal planar bipartite graphs, J. Graph Theory 17 (1993) 755-758. doi:10.1002/jgt.3190170610

[13] X. Zhang, G. Liu and J.-L. Wu, Edge covering pseudo-outerplanar graphs with forests, Discrete Math. 312 (2012) 2788-2799. doi:10.1016/j.disc.2012.05.017