Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_2_a0, author = {Borowiecki, Mieczys{\l}aw and Broere, Izak}, title = {Hamiltonicity and {Generalised} {Total} {Colourings} of {Planar} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {243--257}, publisher = {mathdoc}, volume = {36}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a0/} }
TY - JOUR AU - Borowiecki, Mieczysław AU - Broere, Izak TI - Hamiltonicity and Generalised Total Colourings of Planar Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 243 EP - 257 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a0/ LA - en ID - DMGT_2016_36_2_a0 ER -
Borowiecki, Mieczysław; Broere, Izak. Hamiltonicity and Generalised Total Colourings of Planar Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 243-257. http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a0/
[1] O.V. Borodin, On acyclic colorings of planar graphs, Discrete Math. 25 (1979) 211-236. doi:10.1016/0012-365X(79)90077-3
[2] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Acyclic colourings of planar graphs with large girth, J. Lond. Math. Soc. 60 (1999) 344-352. doi:10.1112/S0024610799007942
[3] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50. doi:10.7151/dmgt.1037
[4] M. Borowiecki, A. Kemnitz, M. Marangio and P. Mihók, Generalized total colorings of graphs, Discuss. Math. Graph Theory 31 (2011) 209-222. doi:10.7151/dmgt.1540
[5] G. Chartrand, H.V. Kronk and C.E. Wall, The point-arboricity of a graph, Israel J. Math. 6 (1968) 169-175. doi:10.1007/BF02760181
[6] R. Diestel, Graph Theory (Springer-Verlag, Berlin, 1997).
[7] G. Ding, B. Oporowski, D.P. Sanders and D. Vertigan, Surfaces, tree-width, cliqueminors, and partitions, J. Combin. Theory Ser. B 79 (2000) 221-246.
[8] R.B. Eggleton, Rectilinear drawings of graphs, Util. Math. 29 (1986) 149-172. doi:10.1006/jetb.2000.1962
[9] A.V. Kostochka and L.S. Mel′nikov, Note to the paper of Gr¨unbaum on acyclic colorings, Discrete Math. 14 (1976) 403-406. doi:10.1016/0012-365X(76)90075-3
[10] M. Król, On a sufficient and necessary condition of 3-colorableness for the planar graphs I, Pr. Nauk. Inst. Mat. Fiz. Teoret. PWr. 6 (1972) 37-40.
[11] G. Ringel, Ein sechsfarbenproblem auf der Kugel, Abh. Math. Semin. Univ. Hambg. 29 (1965) 107-117. doi:10.1007/BF02996313
[12] G. Ringel, Two trees in maximal planar bipartite graphs, J. Graph Theory 17 (1993) 755-758. doi:10.1002/jgt.3190170610
[13] X. Zhang, G. Liu and J.-L. Wu, Edge covering pseudo-outerplanar graphs with forests, Discrete Math. 312 (2012) 2788-2799. doi:10.1016/j.disc.2012.05.017