Maximum Edge-Colorings Of Graphs
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 1, pp. 117-125.

Voir la notice de l'article provenant de la source Library of Science

An r-maximum k-edge-coloring of G is a k-edge-coloring of G having a property that for every vertex v of degree d_G(v) = d, d ≥ r, the maximum color, that is present at vertex v, occurs at v exactly r times. The r-maximum index χ_r^′ (G) is defined to be the minimum number k of colors needed for an r-maximum k-edge-coloring of graph G. In this paper we show that χ_r^′ (G) ≤ 3 for any nontrivial connected graph G and r = 1 or 2. The bound 3 is tight. All graphs G with χ_1^' (G) =i, i = 1, 2, 3 are characterized. The precise value of the r-maximum index, r ≥ 1, is determined for trees and complete graphs.
Keywords: edge-coloring, r -maximum k -edge-coloring, unique-maximum edge-coloring, weak-odd edge-coloring, weak-even edge-coloring
@article{DMGT_2016_36_1_a8,
     author = {Jendrol{\textquoteright}, Stanislav and Vrbjarov\'a, Michaela},
     title = {Maximum {Edge-Colorings} {Of} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {117--125},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a8/}
}
TY  - JOUR
AU  - Jendrol’, Stanislav
AU  - Vrbjarová, Michaela
TI  - Maximum Edge-Colorings Of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 117
EP  - 125
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a8/
LA  - en
ID  - DMGT_2016_36_1_a8
ER  - 
%0 Journal Article
%A Jendrol’, Stanislav
%A Vrbjarová, Michaela
%T Maximum Edge-Colorings Of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 117-125
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a8/
%G en
%F DMGT_2016_36_1_a8
Jendrol’, Stanislav; Vrbjarová, Michaela. Maximum Edge-Colorings Of Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 1, pp. 117-125. http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a8/

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).

[2] G. Chartrand, L. Lesniak and P. Zhang, Graphs & Digraphs (Fifth edition) (Chapman & Hall, CRC, Boca Raton, 2011).

[3] P. Cheilaris, B. Keszegh and D. Pálvölgyi, Unique-maximum and conflict-free coloring for hypergraphs and tree graphs, SIAM J. Discrete Math. 27 (2013) 1775–1787. doi:10.1137/120880471

[4] P. Cheilaris and G. Tóth, Graph unique-maximum and conflict-free coloring, J. Discrete Algorithms 9 (2011) 241–251. doi:10.1016/j.jda.2011.03.005

[5] I. Fabrici, S. Jendrol’ and M. Vrbjarová, Unique-maximum edge-colouring of plane graphs with respect to faces, Discrete Appl. Math. 185 (2015) 239–243. doi:10.1016/j.dam.2014.12.002

[6] B. Lužar, M. Petruševski and R.Škrekovski, Odd edge-coloring of graphs, Ars Math. Contemp. 9 (2015) 277–287.

[7] B. Lužar, M. Petruševski and R.Škrekovski, Weak-parity edge-colorings of graphs, manuscript, 2014.

[8] L. Pyber, Covering the edges of a graph by ..., in: Sets, Graphs and Numbers, Colloquia Math. Soc. János Bolyai 60 (1991) 583–610.