Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_1_a15, author = {Hud\'ak, Peter and Macekov\'a, M\'aria and Madaras, Tom\'a\v{s} and \v{S}iroczki, Pavol}, title = {Light {Graphs} {In} {Planar} {Graphs} {Of} {Large} {Girth}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {227--238}, publisher = {mathdoc}, volume = {36}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a15/} }
TY - JOUR AU - Hudák, Peter AU - Maceková, Mária AU - Madaras, Tomáš AU - Široczki, Pavol TI - Light Graphs In Planar Graphs Of Large Girth JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 227 EP - 238 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a15/ LA - en ID - DMGT_2016_36_1_a15 ER -
%0 Journal Article %A Hudák, Peter %A Maceková, Mária %A Madaras, Tomáš %A Široczki, Pavol %T Light Graphs In Planar Graphs Of Large Girth %J Discussiones Mathematicae. Graph Theory %D 2016 %P 227-238 %V 36 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a15/ %G en %F DMGT_2016_36_1_a15
Hudák, Peter; Maceková, Mária; Madaras, Tomáš; Široczki, Pavol. Light Graphs In Planar Graphs Of Large Girth. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 1, pp. 227-238. http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a15/
[1] K. Appel and W. Haken, Every Planar Map is Four-Colorable (Providence, RI, American Mathematical Society, 1989). doi:10.1090/conm/098
[2] O.V. Borodin, Solution of problems of Kotzig and Grünbaum concerning the isolation of cycles in planar graphs, Mat. Zametki 46(5) (1989) 9–12.
[3] D.W. Cranston and D.B. West, A guide to the discharging method, arXiv:1306.4434 [math.CO] (2013).
[4] S. Jendrol’ and M. Maceková, Describing short paths in plane graphs of girth at least 5, Discrete Math. 338 (2015) 149–158. doi:10.1016/j.disc.2014.09.014
[5] S. Jendrol’, M. Maceková and R. Soták, Note on 3- paths in plane graphs of girth 4, Discrete Math. 338 (2015) 1643–1648. doi:/10.1016/j.disc.2015.04.011
[6] S. Jendrol’, M. Maceková, M. Montassier and R. Soták, Unavoidable 3- paths in planar graphs of given girth, manuscript.
[7] S. Jendrol’ and P.J. Owens, On light graphs in 3- connected plane graphs without triangular or quadrangular faces, Graphs Combin. 17 (2001) 659–680. doi:10.1007/s003730170007
[8] S. Jendrol’ and H.-J. Voss, Light subgraphs of graphs embedded in the plane — A survey, Discrete Math. 313 (2013) 406–421. doi:10.1016/j.disc.2012.11.007
[9] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.Čas. SAV (Math. Slovaca) 5 (1955) 101–113.
[10] H. Lebesgue, Quelques conséquences simples de la formule d’Euler, J. Math. Pures Appl. 19 (1940) 27–43.
[11] N. Robertson, D.P. Sanders, P.D. Seymour and R. Thomas, The four-colour theorem, J. Combin. Theory Ser. B 70 (1997) 2–44. doi:10.1006/jctb.1997.1750
[12] D.B. West, Introduction to Graph Theory (Prentice Hall, 2001).