Supermagic Generalized Double Graphs
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 1, pp. 211-225.

Voir la notice de l'article provenant de la source Library of Science

A graph G is called supermagic if it admits a labelling of the edges by pairwise di erent consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we will introduce some constructions of supermagic labellings of some graphs generalizing double graphs. Inter alia we show that the double graphs of regular Hamiltonian graphs and some circulant graphs are supermagic.
Keywords: double graphs, supermagic graphs, degree-magic graphs
@article{DMGT_2016_36_1_a14,
     author = {Ivan\v{c}o, Jaroslav},
     title = {Supermagic {Generalized} {Double} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {211--225},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a14/}
}
TY  - JOUR
AU  - Ivančo, Jaroslav
TI  - Supermagic Generalized Double Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 211
EP  - 225
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a14/
LA  - en
ID  - DMGT_2016_36_1_a14
ER  - 
%0 Journal Article
%A Ivančo, Jaroslav
%T Supermagic Generalized Double Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 211-225
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a14/
%G en
%F DMGT_2016_36_1_a14
Ivančo, Jaroslav. Supermagic Generalized Double Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 1, pp. 211-225. http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a14/

[1] L’. Bezegová and J. Ivančo, An extension of regular supermagic graphs, Discrete Math. 310 (2010) 3571–3578. doi:10.1016/j.disc.2010.09.005

[2] L’. Bezegová and J. Ivančo, On conservative and supermagic graphs, Discrete Math. 311 (2011) 2428–2436. doi:10.1016/j.disc.2011.07.014

[3] R. Bodendiek and G. Walther, Arithmetisch antimagische graphen, in: Graphentheorie III, K. Wagner, R. Bodendiek (Ed(s)), (BI-Wiss. Verl., Mannheim, 1993).

[4] R. Bodendiek and G. Walther, On arithmetic antimagic edge labelings of graphs, Mitt. Math. Ges. Hamburg 17 (1998) 85–99.

[5] F. Boesch and R. Tindell, Circulants and their connectivities, J. Graph Theory 8 (1984) 487–499. doi:10.1002/jgt.3190080406

[6] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2013) #DS6.

[7] J. Ivančo, On supermagic regular graphs, Math. Bohem. 125 (2000) 99–114.

[8] J. Ivančo, A construction of supermagic graphs, AKCE Int. J. Graphs Comb. 6 (2009) 91–102.

[9] J. Ivančo and A. Semaničová, Some constructions of supermagic graphs using antimagic graphs, SUT J. Math. 42 (2006) 177–186.

[10] E. Munarini, C.P. Cippo, A. Scagliola and N.Z. Salvi, Double graphs, Discrete Math. 308 (2008) 242–254. doi:10.1016/j.disc.2006.11.038

[11] J. Sedláček, Problem 27, in: Theory of Graphs and Its Applications, Proc. Symp. Smolenice (Praha, 1963) 163–164.

[12] A. Semaničová, On magic and supermagic circulant graphs, Discrete Math. 306 (2006) 2263–2269. doi:10.1016/j.disc.2006.04.011

[13] B.M. Stewart, Magic graphs, Canad. J. Math. 18 (1966) 1031–1059. doi:10.4153/CJM-1966-104-7

[14] B.M. Stewart, Supermagic complete graphs, Canad. J. Math. 19 (1967) 427–438. doi:10.4153/CJM-1967-035-9