Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_1_a13, author = {Casel, Katrin and Estrada-Moreno, Alejandro and Fernau, Henning and Rodr{\'\i}guez-Vel\'azquez, Juan Alberto}, title = {Weak {Total} {Resolvability} {In} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {185--210}, publisher = {mathdoc}, volume = {36}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a13/} }
TY - JOUR AU - Casel, Katrin AU - Estrada-Moreno, Alejandro AU - Fernau, Henning AU - Rodríguez-Velázquez, Juan Alberto TI - Weak Total Resolvability In Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 185 EP - 210 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a13/ LA - en ID - DMGT_2016_36_1_a13 ER -
%0 Journal Article %A Casel, Katrin %A Estrada-Moreno, Alejandro %A Fernau, Henning %A Rodríguez-Velázquez, Juan Alberto %T Weak Total Resolvability In Graphs %J Discussiones Mathematicae. Graph Theory %D 2016 %P 185-210 %V 36 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a13/ %G en %F DMGT_2016_36_1_a13
Casel, Katrin; Estrada-Moreno, Alejandro; Fernau, Henning; Rodríguez-Velázquez, Juan Alberto. Weak Total Resolvability In Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 1, pp. 185-210. http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a13/
[1] R.C. Brigham, G. Chartrand, R.D. Dutton and P. Zhang, Resolving domination in graphs, Math. Bohem. 128 (2003) 25–36.
[2] G. Chartrand, V. Saenpholphat and P. Zhang, The independent resolving number of a graph, Math. Bohem. 128 (2003) 379–393.
[3] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, 2nd Ed. (CRC Press, 2011).
[4] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191–195.
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Chapman and Hall/CRC Pure and Applied Mathematics Series, Marcel Dekker, Inc. New York, 1998).
[6] I. Javaid, F. Iftikhar and M. Salman, Total resolvability in graphs, Middle-East Journal of Scientific Research 11 (2012) 1649–1658.
[7] F. Okamoto, B. Phinezy and P. Zhang, The local metric dimension of a graph, Math. Bohem. 135 (2010) 239–255.
[8] A. Sebö and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29 (2004) 383–393. doi:10.1287/moor.1030.0070
[9] P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975) 549–559.