A Fan-Type Heavy Pair Of Subgraphs For Pancyclicity Of 2-Connected Graphs
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 1, pp. 173-184.

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph on n vertices and let H be a given graph. We say that G is pancyclic, if it contains cycles of all lengths from 3 up to n, and that it is H-f_1-heavy, if for every induced subgraph K of G isomorphic to H and every two vertices u, v ∈ V (K), d_K(u, v) = 2 implies min{ d_G(u), d_G(v) }≥n+1/2. In this paper we prove that every 2-connected { K_1,3 , P_5-f_1-heavy graph is pancyclic. This result completes the answer to the problem of finding f_1-heavy pairs of subgraphs implying pancyclicity of 2-connected graphs.
Keywords: cycle, Fan-type heavy subgraph, Hamilton cycle, pancyclicity
@article{DMGT_2016_36_1_a12,
     author = {Wide{\l}, Wojciech},
     title = {A {Fan-Type} {Heavy} {Pair} {Of} {Subgraphs} {For} {Pancyclicity} {Of} {2-Connected} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {173--184},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a12/}
}
TY  - JOUR
AU  - Wideł, Wojciech
TI  - A Fan-Type Heavy Pair Of Subgraphs For Pancyclicity Of 2-Connected Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 173
EP  - 184
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a12/
LA  - en
ID  - DMGT_2016_36_1_a12
ER  - 
%0 Journal Article
%A Wideł, Wojciech
%T A Fan-Type Heavy Pair Of Subgraphs For Pancyclicity Of 2-Connected Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 173-184
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a12/
%G en
%F DMGT_2016_36_1_a12
Wideł, Wojciech. A Fan-Type Heavy Pair Of Subgraphs For Pancyclicity Of 2-Connected Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 1, pp. 173-184. http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a12/

[1] P. Bedrossian, Forbidden subgraph and Minimum Degree Conditions for Hamiltonicity, PhD Thesis (Memphis State University, USA, 1991).

[2] P. Bedrossian, G. Chen and R.H. Schelp, A generalization of Fan’s condition for Hamiltonicity, pancyclicity and Hamiltonian connectedness, Discrete Math. 115 (1993) 39–59. doi:10.1016/0012-365X(93)90476-A

[3] A. Benhocine and A.P. Wojda, The Geng-Hua Fan conditions for pancyclic or Hamilton-connected graphs, J. Combin. Theory Ser. B 58 (1987) 167–180. doi:10.1016/0095-8956(87)90038-4

[4] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory Ser. B 11 (1971) 80–84. doi:10.1016/0095-8956(71)90016-5

[5] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan London and Elsevier, 1976).

[6] G. Fan, New su cient conditions for cycles in graphs, J. Combin. Theory Ser. B 37 (1984) 221–227. doi:0.1016/0095-8956(84)90054-6

[7] M. Ferrara, M.S. Jacobson and A. Harris, Cycle lenghts in Hamiltonian graphs with a pair of vertices having large degree sum, Graphs Combin. 26 (2010) 215–223. doi:10.1007/s00373-010-0915-z

[8] B. Ning, Pairs of Fan-type heavy subgraphs for pancyclicity of 2- connected graphs, Australas. J. Combin. 58 (2014) 127–136.

[9] B. Ning and S. Zhang, Ore- and Fan-type heavy subgraphs for Hamiltonicity of 2- connected graphs, Discrete Math. 313 (2013) 1715–1725. doi:10.1016/j.disc.2013.04.023

[10] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for Hamiltonian graphs, J. Combin. Theory Ser. B 45 (1988) 99–107. doi:10.1016/0095-8956(88)90058-5