Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_1_a12, author = {Wide{\l}, Wojciech}, title = {A {Fan-Type} {Heavy} {Pair} {Of} {Subgraphs} {For} {Pancyclicity} {Of} {2-Connected} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {173--184}, publisher = {mathdoc}, volume = {36}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a12/} }
TY - JOUR AU - Wideł, Wojciech TI - A Fan-Type Heavy Pair Of Subgraphs For Pancyclicity Of 2-Connected Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 173 EP - 184 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a12/ LA - en ID - DMGT_2016_36_1_a12 ER -
Wideł, Wojciech. A Fan-Type Heavy Pair Of Subgraphs For Pancyclicity Of 2-Connected Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 1, pp. 173-184. http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a12/
[1] P. Bedrossian, Forbidden subgraph and Minimum Degree Conditions for Hamiltonicity, PhD Thesis (Memphis State University, USA, 1991).
[2] P. Bedrossian, G. Chen and R.H. Schelp, A generalization of Fan’s condition for Hamiltonicity, pancyclicity and Hamiltonian connectedness, Discrete Math. 115 (1993) 39–59. doi:10.1016/0012-365X(93)90476-A
[3] A. Benhocine and A.P. Wojda, The Geng-Hua Fan conditions for pancyclic or Hamilton-connected graphs, J. Combin. Theory Ser. B 58 (1987) 167–180. doi:10.1016/0095-8956(87)90038-4
[4] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory Ser. B 11 (1971) 80–84. doi:10.1016/0095-8956(71)90016-5
[5] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan London and Elsevier, 1976).
[6] G. Fan, New su cient conditions for cycles in graphs, J. Combin. Theory Ser. B 37 (1984) 221–227. doi:0.1016/0095-8956(84)90054-6
[7] M. Ferrara, M.S. Jacobson and A. Harris, Cycle lenghts in Hamiltonian graphs with a pair of vertices having large degree sum, Graphs Combin. 26 (2010) 215–223. doi:10.1007/s00373-010-0915-z
[8] B. Ning, Pairs of Fan-type heavy subgraphs for pancyclicity of 2- connected graphs, Australas. J. Combin. 58 (2014) 127–136.
[9] B. Ning and S. Zhang, Ore- and Fan-type heavy subgraphs for Hamiltonicity of 2- connected graphs, Discrete Math. 313 (2013) 1715–1725. doi:10.1016/j.disc.2013.04.023
[10] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for Hamiltonian graphs, J. Combin. Theory Ser. B 45 (1988) 99–107. doi:10.1016/0095-8956(88)90058-5