Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_1_a1, author = {Couch, PJ and Daniel, B.D. and Guidry, R. and Paul Wright, W.}, title = {Split {Euler} {Tours} {In} {4-Regular} {Planar} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {23--30}, publisher = {mathdoc}, volume = {36}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a1/} }
TY - JOUR AU - Couch, PJ AU - Daniel, B.D. AU - Guidry, R. AU - Paul Wright, W. TI - Split Euler Tours In 4-Regular Planar Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 23 EP - 30 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a1/ LA - en ID - DMGT_2016_36_1_a1 ER -
Couch, PJ; Daniel, B.D.; Guidry, R.; Paul Wright, W. Split Euler Tours In 4-Regular Planar Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 1, pp. 23-30. http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a1/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier, New York, 1976).
[2] H.J. Broersma, A.J.W. Duijvestijn and F. Gőbel, Generating all 3- connected 4- regular planar graphs from the octahedron graph, J. Graph Theory 17 (1993) 613–620. doi:10.1002/jgt.3190170508
[3] J. Czap and S. Jendrol’, Colouring vertices of plane graphs under restrictions given by faces, Discuss. Math. Graph Theory 29 (2009) 521–543. doi:10.7151/dmgt.1462
[4] N. Dean, Which graphs are pancyclic modulo k?, in: Sixth Intl. Conference on the Theory of Applications of Graphs, (Kalamazoo, Michigan, 1988) 315–326.
[5] N. Dean, L. Lesniak and A. Saito, Cycles of length 0 modulo 4 in graphs, Discrete Math. 121 (1993) 37–49. doi:10.1016/0012-365X(93)90535-2
[6] J. Froemke, J.W. Grossman and D.M. Kulkarni, Direct message delivery among processors with limited capacity, in: Graph Theory, Combinatorics, and Algorithms, Vol. 1,2, Kalamazoo, MI, (Wiley-Intersci. Publ., Wiley, New York, 1992) 467–476.
[7] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979).
[8] M.R. Garey, D.S. Johnson and R.E. Tarjan, The planar Hamiltonian circuit problem is NP-complete, SIAM J. Comput. 5 (1976) 704–714. doi:10.1137/0205049
[9] S. Jendrol’ and H.-J. Voss, Light subgraphs of graphs embedded in the plane—A survey, Discrete Math. 313 (2013) 406–421. doi:10.1016/j.disc.2012.11.007
[10] H. Lebesgue, Quelques consequences simple de la formula d’Euler, J. Math. Pures Appl. 9 (1940) 27–43.
[11] J. Lehel, Generating all 4- regular planar graphs from the graph of the octahedron, J. Graph Theory 5 (1981) 423–426. doi:10.1002/jgt.3190050412
[12] P. Manca, Generating all planar graphs regular of degree four, J. Graph Theory 3 (1979) 357–364. doi:10.1002/jgt.3190030406