Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_1_a0, author = {Kalinowski, Rafa{\l} and Pil\'sniak, Monika and Schiermeyer, Ingo and Wo\'zniak, Mariusz}, title = {Dense {Arbitrarily} {Partitionable} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {5--22}, publisher = {mathdoc}, volume = {36}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a0/} }
TY - JOUR AU - Kalinowski, Rafał AU - Pilśniak, Monika AU - Schiermeyer, Ingo AU - Woźniak, Mariusz TI - Dense Arbitrarily Partitionable Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 5 EP - 22 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a0/ LA - en ID - DMGT_2016_36_1_a0 ER -
%0 Journal Article %A Kalinowski, Rafał %A Pilśniak, Monika %A Schiermeyer, Ingo %A Woźniak, Mariusz %T Dense Arbitrarily Partitionable Graphs %J Discussiones Mathematicae. Graph Theory %D 2016 %P 5-22 %V 36 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a0/ %G en %F DMGT_2016_36_1_a0
Kalinowski, Rafał; Pilśniak, Monika; Schiermeyer, Ingo; Woźniak, Mariusz. Dense Arbitrarily Partitionable Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 1, pp. 5-22. http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a0/
[1] D. Barth, O. Baudon and J. Puech, Network sharing: a polynomial algorithm for tripodes, Discrete Appl. Math. 119 (2002) 205–216. doi:10.1016/S0166-218X(00)00322-X
[2] O. Baudon, J. Bensmail, R. Kalinowski, A. Marczyk, J. Przybyło and M. Woźniak, On the Cartesian product of an arbitrarily partitionable graph and a traceable graph, Discrete Math. Theor. Comput. Sci. 16 (2014) 225–232.
[3] O. Baudon, J. Bensmail, J. Przybyło and M. Woźniak, Partitioning powers of traceable or Hamiltonian graphs, Theoret. Comput. Sci. 520 (2014) 133–137. doi:10.1016/j.tcs.2013.10.016
[4] O. Baudon, F. Foucaud, J. Przybyło and M. Woźniak, On the structure of arbitrarily partitionable graphs with given connectivity, Discrete Appl. Math. 162 (2014) 381–385. doi:10.1016/j.dam.2013.09.007
[5] O. Baudon, F. Gilbert and M. Woźniak, Recursively arbitrarily vertex decomposable graphs, Opuscula Math. 32 (2012) 689–706. doi:10.7494/OpMath.2012.32.4.689
[6] O. Baudon, F. Gilbert and M. Woźniak, Recursively arbitrarily vertex decomposable suns, Opuscula Math. 31 (2011) 533–547. doi:10.7494/OpMath.2011.31.4.533
[7] O. Baudon, J. Przybyło and M. Woźniak, On minimal arbitrarily partitionable graphs, Inform. Process. Lett. 112 (2012) 697–700. doi:10.1016/j.ipl.2012.06.010
[8] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).
[9] H.J. Broersma, D. Kratsch and G.J. Woeginger, Fully decomposable split graphs, Lecture Notes in Comput. Sci. 5874 (2009) 4105–4112. doi:10.1007/978-3-642-10217-2_13
[10] P. Erdős, Remarks on a paper of Pósa, Magyar Tud. Akad. Mat. Kutató Int. Kőzl. 7 (1962) 227–229.
[11] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337–356. doi:10.1007/BF02024498
[12] M. Horňák, A. Marczyk, I. Schiermeyer and M. Woźniak, Dense arbitrarily vertex decomposable graphs, Graphs Combin. 28 (2012) 807–821. doi:10.1007/s00373-011-1077-3
[13] M. Horňák and M. Woźniak, Arbitrarily vertex decomposable trees are of maximum degree at most six, Opuscula Math. 23 (2003) 49–62.
[14] M. Horňák, Zs. Tuza and M. Woźniak, On-line arbitrarily vertex decomposable trees, Discrete Appl. Math. 155 (2007) 1420–1429. doi:10.1016/j.dam.2007.02.011
[15] R. Kalinowski, M. Pilśniak, M. Woźniak and I.A. Zioło, Arbitrarily vertex decomposable suns with few rays, Discrete Math. 309 (2009) 3726–3732. doi:10.1016/j.disc.2008.02.019
[16] R. Kalinowski, M. Pilśniak, M. Woźniak and I.A. Zioło, On-line arbitrarily vertex decomposable suns, Discrete Math. 309 (2009) 6328–6336. doi:10.1016/j.disc.2008.11.025
[17] A. Kemnitz and I. Schiermeyer, Improved degree conditions for Hamiltonian properties, Discrete Math. 312 (2012) 2140–2145. doi:10.1016/j.disc.2011.07.013
[18] A. Marczyk, A note on arbitrarily vertex decomposable graphs, Opuscula Math. 26 (2006) 109–118.
[19] A. Marczyk, An Ore-type condition for arbitrarily vertex decomposable graphs, Discrete Math. 309 (2009) 3588–3594. doi:10.1016/j.disc.2007.12.066
[20] D.R. Woodall, Maximal circuits of graphs I, Acta Math. Acad. Sci. Hungar. 28 (1976) 77–80. doi:10.1007/BF01902497