Maximum Independent Sets in Direct Products of Cycles or Trees with Arbitrary Graphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 4, pp. 675-688

Voir la notice de l'article provenant de la source Library of Science

The direct product of graphs G = (V (G), E(G)) and H = (V (H), E(H)) is the graph, denoted as G×H, with vertex set V (G×H) = V (G)×V (H), where vertices (x1, y1) and (x2, y2) are adjacent in G × H if x1x2 ∈ E(G) and y1y2 ∈ E(H). Let n be odd and m even. We prove that every maximum independent set in Pn×G, respectively Cm×G, is of the form (A×C)∪(B×D), where C and D are nonadjacent in G, and A∪B is the bipartition of Pn respectively Cm. We also give a characterization of maximum independent subsets of Pn × G for every even n and discuss the structure of maximum independent sets in T × G where T is a tree.
Keywords: direct product, independent set
@article{DMGT_2015_35_4_a6,
     author = {Paj, Tja\v{s}a and \v{S}pacapan, Simon},
     title = {Maximum {Independent} {Sets} in {Direct} {Products} of {Cycles} or {Trees} with {Arbitrary} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {675--688},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a6/}
}
TY  - JOUR
AU  - Paj, Tjaša
AU  - Špacapan, Simon
TI  - Maximum Independent Sets in Direct Products of Cycles or Trees with Arbitrary Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 675
EP  - 688
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a6/
LA  - en
ID  - DMGT_2015_35_4_a6
ER  - 
%0 Journal Article
%A Paj, Tjaša
%A Špacapan, Simon
%T Maximum Independent Sets in Direct Products of Cycles or Trees with Arbitrary Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 675-688
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a6/
%G en
%F DMGT_2015_35_4_a6
Paj, Tjaša; Špacapan, Simon. Maximum Independent Sets in Direct Products of Cycles or Trees with Arbitrary Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 4, pp. 675-688. http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a6/