Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_4_a6, author = {Paj, Tja\v{s}a and \v{S}pacapan, Simon}, title = {Maximum {Independent} {Sets} in {Direct} {Products} of {Cycles} or {Trees} with {Arbitrary} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {675--688}, publisher = {mathdoc}, volume = {35}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a6/} }
TY - JOUR AU - Paj, Tjaša AU - Špacapan, Simon TI - Maximum Independent Sets in Direct Products of Cycles or Trees with Arbitrary Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 675 EP - 688 VL - 35 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a6/ LA - en ID - DMGT_2015_35_4_a6 ER -
%0 Journal Article %A Paj, Tjaša %A Špacapan, Simon %T Maximum Independent Sets in Direct Products of Cycles or Trees with Arbitrary Graphs %J Discussiones Mathematicae. Graph Theory %D 2015 %P 675-688 %V 35 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a6/ %G en %F DMGT_2015_35_4_a6
Paj, Tjaša; Špacapan, Simon. Maximum Independent Sets in Direct Products of Cycles or Trees with Arbitrary Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 4, pp. 675-688. http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a6/
[1] G. Abay-Asmerom, R. Hammack, C.E. Larson and D.T. Taylor, Notes on the inde- pendence number in the Cartesian product of graphs, Discuss. Math. Graph Theory 31 (2011) 25-35. doi:10.7151/dmgt.1527
[2] N. Alon, I. Dinur, E. Friedgut and B. Sudakov, Graph products, Fourier analysis and spectral techniques, Geom. Funct. Anal. 14 (2004) 913-940. doi:10.1007/s00039-004-0478-3
[3] S.H. Badalyan and S.E. Markosyan, On the independence number of the strong product of cycle-powers, Discrete Math. 313 (2013) 105-110. doi:10.1016/j.disc.2012.09.008
[4] L.M. Friedler, The independence number of the Cartesian product of graphs, Ars Combin. 99 (2011) 205-216.
[5] D. Greenwell and L. Lovász, Applications of product colouring, Acta Math. Acad. Sci. Hungar. 25 (1974) 335-340. doi:/10.1007/BF01886093
[6] X.B. Geng, J. Wang and H. Zhang, Structure of independent sets in direct products of some vertex-transitive graphs, Acta Math. Sin. (Engl. Ser.) 28 (2012) 697-706.
[7] J. Hagauer and S. Klavžar, On independence numbers of the Cartesian product of graphs, Ars Combin. 43 (1996) 149-157.
[8] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second Edition (CRC Press, Boca Raton, FL, 2011).
[9] P.K. Jha, Further results on independence in direct-product graphs, Ars Combin. 56 (2000) 15-24.
[10] P.K. Jha and S. Klavžar, Independence in direct-product graphs, Ars Combin. 50 (1998) 53-63.
[11] S. Klavžar, Some new bounds and exact results on the independence number of Cartesian product graphs, Ars Combin. 74 (2005) 173-186.
[12] A. Klobučar, Independent sets and independent dominating sets in the strong product of paths and cycles, Math. Commun. 10 (2005) 23-30.
[13] D. Korže and A. Vesel, A note on the independence number of strong products of odd cycles, Ars Combin. 106 (2012) 473-481.
[14] B. Larose and C. Tardif, Projectivity and independent sets in powers of graphs, J. Graph Theory 40 (2002) 162-171. doi:10.1002/jgt.10041
[15] S.P. Martin, J.S. Powell and D.F. Rall, On the independence number of the Carte- sian product of caterpillars, Ars Combin. 60 (2001) 73-84.
[16] T. Sitthiwirattham, Independent and vertex covering number on Kronecker product of Pn, Int. J. Pure Appl. Math. 73 (2011) 227-234.
[17] T. Sitthiwirattham and J. Soontharanon, Independent and vertex covering number on Kronecker product of Cn, Int. J. Pure Appl. Math. 71 (2011) 149-157.
[18] S. Špacapan, The k-independence number of direct products of graphs and Hedet- niemi’s conjecture, European J. Combin. 32 (2011) 1377-1383. doi:10.1016/j.ejc.2011.07.002
[19] C. Tardif, Graph products and the chromatic difference sequence of vertex-transitive graphs, Discrete Math. 185 (1998) 193-200. doi:10.1016/S0012-365X(97)00171-4
[20] M. Valencia-Pabon and J. Vera, Independence and coloring properties of direct prod- ucts of some vertex-transitive graphs, Discrete Math. 306 (2006) 2275-2281. doi:10.1016/j.disc.2006.04.013
[21] H. Zhang, Independent sets in direct products of vertex-transitive graphs, J. Combin. Theory Ser. B 102 (2012) 832-838. doi:10.1016/j.jctb.2011.12.005
[22] H. Zhang, Primitivity and independent sets in direct products of vertex-transitive graphs, J. Graph Theory 67 (2011) 218-225. doi:10.1002/jgt.20526
[23] X. Zhu, A survey on Hedetniemi’s conjecture, Taiwanese J. Math. 2 (1998) 1-24.
[24] X. Zhu, The fractional version of Hedetniemi’s conjecture is true, European J. Com- bin. 32 (2011) 1168-1175. doi:10.1016/j.ejc.2011.03.004