Maximum Independent Sets in Direct Products of Cycles or Trees with Arbitrary Graphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 4, pp. 675-688
Voir la notice de l'article provenant de la source Library of Science
The direct product of graphs G = (V (G), E(G)) and H = (V (H), E(H)) is the graph, denoted as G×H, with vertex set V (G×H) = V (G)×V (H), where vertices (x1, y1) and (x2, y2) are adjacent in G × H if x1x2 ∈ E(G) and y1y2 ∈ E(H). Let n be odd and m even. We prove that every maximum independent set in Pn×G, respectively Cm×G, is of the form (A×C)∪(B×D), where C and D are nonadjacent in G, and A∪B is the bipartition of Pn respectively Cm. We also give a characterization of maximum independent subsets of Pn × G for every even n and discuss the structure of maximum independent sets in T × G where T is a tree.
Keywords:
direct product, independent set
@article{DMGT_2015_35_4_a6,
author = {Paj, Tja\v{s}a and \v{S}pacapan, Simon},
title = {Maximum {Independent} {Sets} in {Direct} {Products} of {Cycles} or {Trees} with {Arbitrary} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {675--688},
publisher = {mathdoc},
volume = {35},
number = {4},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a6/}
}
TY - JOUR AU - Paj, Tjaša AU - Špacapan, Simon TI - Maximum Independent Sets in Direct Products of Cycles or Trees with Arbitrary Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 675 EP - 688 VL - 35 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a6/ LA - en ID - DMGT_2015_35_4_a6 ER -
%0 Journal Article %A Paj, Tjaša %A Špacapan, Simon %T Maximum Independent Sets in Direct Products of Cycles or Trees with Arbitrary Graphs %J Discussiones Mathematicae. Graph Theory %D 2015 %P 675-688 %V 35 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a6/ %G en %F DMGT_2015_35_4_a6
Paj, Tjaša; Špacapan, Simon. Maximum Independent Sets in Direct Products of Cycles or Trees with Arbitrary Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 4, pp. 675-688. http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a6/