On the Signed (Total) k-Independence Number in Graphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 4, pp. 651-662

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph. A function f : V (G) → −1, 1 is a signed k- independence function if the sum of its function values over any closed neighborhood is at most k − 1, where k ≥ 2. The signed k-independence number of G is the maximum weight of a signed k-independence function of G. Similarly, the signed total k-independence number of G is the maximum weight of a signed total k-independence function of G. In this paper, we present new bounds on these two parameters which improve some existing bounds.
Keywords: domination in graphs, signed k-independence, limited packing, tuple domination
@article{DMGT_2015_35_4_a4,
     author = {Khodkar, Abdollah and Samadi, Babak and Volkmann, Lutz},
     title = {On the {Signed} {(Total)} {k-Independence} {Number} in {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {651--662},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a4/}
}
TY  - JOUR
AU  - Khodkar, Abdollah
AU  - Samadi, Babak
AU  - Volkmann, Lutz
TI  - On the Signed (Total) k-Independence Number in Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 651
EP  - 662
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a4/
LA  - en
ID  - DMGT_2015_35_4_a4
ER  - 
%0 Journal Article
%A Khodkar, Abdollah
%A Samadi, Babak
%A Volkmann, Lutz
%T On the Signed (Total) k-Independence Number in Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 651-662
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a4/
%G en
%F DMGT_2015_35_4_a4
Khodkar, Abdollah; Samadi, Babak; Volkmann, Lutz. On the Signed (Total) k-Independence Number in Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 4, pp. 651-662. http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a4/