@article{DMGT_2015_35_3_a8,
author = {Malvestuto, Francesco Mario and Moscarini, Marina},
title = {Decomposability of {Abstract} and {Path-Induced} {Convexities} in {Hypergraphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {493--515},
year = {2015},
volume = {35},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a8/}
}
TY - JOUR AU - Malvestuto, Francesco Mario AU - Moscarini, Marina TI - Decomposability of Abstract and Path-Induced Convexities in Hypergraphs JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 493 EP - 515 VL - 35 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a8/ LA - en ID - DMGT_2015_35_3_a8 ER -
Malvestuto, Francesco Mario; Moscarini, Marina. Decomposability of Abstract and Path-Induced Convexities in Hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 493-515. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a8/
[1] C. Beeri, R. Fagin, D. Maier and M. Yannakakis, On the desirability of acyclic database schemes, J. ACM 30 (1983) 479-513. doi:10.1145/2402.322389
[2] M. Changat and J. Mathew, On triangle path convexity in graphs, Discrete Math. 206 (1999) 91-95. doi:10.1016/S0012-365X(98)00394-X
[3] M. Changat, H.M. Mulder and G. Sierksma, Convexities related to path properties on graphs, Discrete Math. 290 (2005) 117-131. doi:10.1016/j.disc.2003.07.014
[4] R. Diestel, Graph Decompositions: A Study in Infinity Graph Theory (Clarendon Press, Oxford, 1990).
[5] P. Duchet, Convexity in combinatorial structures, in: Proceedings of the 14th Winter School on Abstract Analysis, Frolik, Souček and Fabián (Eds), (Circolo Matematico di Palermo, Palermo 1987), Serie II 14 261-293
[6] P. Duchet, Convex sets in graphs II: minimal path convexity, J. Combin. Theory Ser. B 44 (1988) 307-316. doi:10.1016/0095-8956(88)90039-1
[7] P. Duchet, Discrete convexity: retractions, morphisms and the partition problem, in: Proceedings of the Conference on Graph Connections, Balakrishnan, Mulder and Vijayakumar (Ed(s)), (Allied Publishers, New Delhi, 1999) 10-18.
[8] M. Farber and R.E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Alge- braic Discrete Methods 7 (1986) 433-444. doi:10.1137/0607049
[9] H.-G. Leimer, Optimal decomposition by clique separators, Discrete Math. 113 (1993) 99-123. doi:10.1016/0012-365X(93)90510-Z
[10] F.M. Malvestuto, Canonical and monophonic convexities in hypergraphs, Discrete Math. 309 (2009) 4287-4298. doi:10.1016/j.disc.2009.01.003
[11] F.M. Malvestuto, Decomposable convexities in graphs and hypergraphs, ISRN Com- binatorics 2013 Article ID 453808. doi:10.1155/2013/453808
[12] F.M. Malvestuto, M. Mezzini and M. Moscarini, Equivalence between hypergraph convexities ISRN Discrete Mathematics 2011 Article ID 806193. doi:10.5402/2011/806193
[13] R.E. Tarjan, Decomposition by clique separators, Discrete Math. 55 (1985) 221-232. doi:10.1016/0012-365X(85)90051-2
[14] M. Van de Vel, Theory of Convex Structures (North-Holland Publishing Co., Ams- terdam, 1993).
[15] S. Whitesides, An Algorithm for finding clique cut-sets, Inform. Process. Lett. 12 (1981) 31-32. doi:10.1016/0020-0190(81)90072-7