Strong ƒ-Star Factors of Graphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 475-482.

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph and f : V (G) → 2, 3, . . .. A spanning subgraph F is called strong f-star of G if each component of F is a star whose center x satisfies degF (x) ≤ ƒ(x) and F is an induced subgraph of G. In this paper, we prove that G has a strong f-star factor if and only if oddca(G − S) ≤ ∑x∊S ƒ(x) for all S ⊂ V (G), where oddca(G) denotes the number of odd complete-cacti of G.
Keywords: ƒ-star factor, strong ƒ-star factor, complete-cactus, factor of graph
@article{DMGT_2015_35_3_a6,
     author = {Yan, Zheng},
     title = {Strong {{\textflorin}-Star} {Factors} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {475--482},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a6/}
}
TY  - JOUR
AU  - Yan, Zheng
TI  - Strong ƒ-Star Factors of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 475
EP  - 482
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a6/
LA  - en
ID  - DMGT_2015_35_3_a6
ER  - 
%0 Journal Article
%A Yan, Zheng
%T Strong ƒ-Star Factors of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 475-482
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a6/
%G en
%F DMGT_2015_35_3_a6
Yan, Zheng. Strong ƒ-Star Factors of Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 475-482. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a6/

[1] J. Akiyama and M. Kano, Factors and Factorizations of Graphs (Lecture Note in Math. 2031 Springer- Verlag Berlin Heidelberg, 2011). doi:10.1007/978-3-642-21919-1

[2] A. Amahashi and M. Kano, On factors with given components, Discrete Math. 42 (1982) 1-6. doi:10.1016/0012-365X(82)90048-6

[3] C. Berge and M. Las Vergnas, On the existence of subgraphs with degree constraints, Indag. Math. Proc. 81 (1978) 165-176. doi:10.1016/S1385-7258(78)80007-9

[4] Y. Egawa, M. Kano and A.K. Kelmans, Star partitions of graphs, J. Graph Theory 25 (1997) 185-190. doi:10.1002/(SICI)1097-0118(199707)25:3h185::AID-JGT2i3.0.CO;2-H

[5] J. Folkman and D.R. Fulkerson, Flows in infinite graphs, J. Combin. Theory 8 (1970) 30-44. doi:10.1016/S0021-9800(70)80006-0

[6] M. Las Vergnas, An extension of Tutte’s 1-factor theorem, Discrete Math. 23 (1978) 241-255. doi:10.1016/0012-365X(78)90006-7

[7] A.K. Kelmans, Optimal packing of induced stars in a graph, RUTCOR Research Report 26-94, Rutgers University (1994) 1-25.

[8] A. Saito and M. Watanabe, Partitioning graphs into induced stars, Ars Combin. 36 (1993) 3-6.