Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_3_a6, author = {Yan, Zheng}, title = {Strong {{\textflorin}-Star} {Factors} of {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {475--482}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a6/} }
Yan, Zheng. Strong ƒ-Star Factors of Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 475-482. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a6/
[1] J. Akiyama and M. Kano, Factors and Factorizations of Graphs (Lecture Note in Math. 2031 Springer- Verlag Berlin Heidelberg, 2011). doi:10.1007/978-3-642-21919-1
[2] A. Amahashi and M. Kano, On factors with given components, Discrete Math. 42 (1982) 1-6. doi:10.1016/0012-365X(82)90048-6
[3] C. Berge and M. Las Vergnas, On the existence of subgraphs with degree constraints, Indag. Math. Proc. 81 (1978) 165-176. doi:10.1016/S1385-7258(78)80007-9
[4] Y. Egawa, M. Kano and A.K. Kelmans, Star partitions of graphs, J. Graph Theory 25 (1997) 185-190. doi:10.1002/(SICI)1097-0118(199707)25:3h185::AID-JGT2i3.0.CO;2-H
[5] J. Folkman and D.R. Fulkerson, Flows in infinite graphs, J. Combin. Theory 8 (1970) 30-44. doi:10.1016/S0021-9800(70)80006-0
[6] M. Las Vergnas, An extension of Tutte’s 1-factor theorem, Discrete Math. 23 (1978) 241-255. doi:10.1016/0012-365X(78)90006-7
[7] A.K. Kelmans, Optimal packing of induced stars in a graph, RUTCOR Research Report 26-94, Rutgers University (1994) 1-25.
[8] A. Saito and M. Watanabe, Partitioning graphs into induced stars, Ars Combin. 36 (1993) 3-6.