Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_3_a3, author = {Pravas, Karuvachery and Vijayakumar, Ambat}, title = {The {Median} {Problem} on {k-Partite} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {439--446}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a3/} }
Pravas, Karuvachery; Vijayakumar, Ambat. The Median Problem on k-Partite Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 439-446. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a3/
[1] K. Balakrishnan, B. Brešar, M. Kovše, M. Changat, A.R. Subhamathi and S. Klavžar, Simultaneous embeddings of graphs as median and antimedian ubgraphs, Networks 56 (2010) 90-94. doi:10.002/net.20350
[2] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Second Edition (Heidelberg, Springer, 2012). doi:10.1007/978-1-4614-4529-6
[3] H. Bielak and M.M. Sys lo, Peripheral vertices in graphs, Studia Sci. Math. Hungar. 18 (1983) 269-275.
[4] H. Kautz, B. Selman and M. Shah, Referral Web: combining social networks and collaborative filtering, Communications of the ACM 40(3) (1997) 63-65. doi:10.1145/245108.245123
[5] K. Pravas and A. Vijayakumar, Convex median and anti-median at pre- scribed distance, communicated.
[6] P.J. Slater, Medians of arbitrary graphs, J. Graph Theory 4 (1980) 389-392. doi:10.1002/jgt.3190040408
[7] S.B. Rao and A.Vijayakumar, On the median and the anti-median of a co- graph, Int. J. Pure Appl. Math. 46 (2008) 703-710.
[8] H.G. Yeh and G.J. Chang, Centers and medians of distance-hereditary graphs, Discrete Math. 265 (2003) 297-310. doi:10.1016/S0012-365X(02)00630-1