Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_3_a2, author = {Matsushita, Masayoshi and Otachi, Yota and Araki, Toru}, title = {Completely {Independent} {Spanning} {Trees} in {(Partial)} {k-Trees}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {427--437}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a2/} }
TY - JOUR AU - Matsushita, Masayoshi AU - Otachi, Yota AU - Araki, Toru TI - Completely Independent Spanning Trees in (Partial) k-Trees JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 427 EP - 437 VL - 35 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a2/ LA - en ID - DMGT_2015_35_3_a2 ER -
%0 Journal Article %A Matsushita, Masayoshi %A Otachi, Yota %A Araki, Toru %T Completely Independent Spanning Trees in (Partial) k-Trees %J Discussiones Mathematicae. Graph Theory %D 2015 %P 427-437 %V 35 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a2/ %G en %F DMGT_2015_35_3_a2
Matsushita, Masayoshi; Otachi, Yota; Araki, Toru. Completely Independent Spanning Trees in (Partial) k-Trees. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 427-437. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a2/
[1] T. Araki, Dirac’s condition for completely independent spanning trees, J. Graph Theory 77 (2014) 171-179. doi:10.1002/jgt.21780
[2] S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems restricted to partial k-trees, Discrete Appl. Math. 23 (1989) 11-24. doi:10.1016/0166-218X(89)90031-0
[3] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209 (1998) 1-45. doi:10.1016/S0304-3975(97)00228-4
[4] H.L. Bodlaender, F.V. Fomin, P.A. Golovach, Y. Otachi and E.J. van Leeuwen, Parameterized complexity of the spanning tree congestion problem, Algorithmica 64 (2012) 85-111. doi:10.1007/s00453-011-9565-7
[5] H.L. Bodlaender and A.M.C.A. Koster, Combinatorial optimization on graphs of bounded treewidth, Comput. J. 51 (2008) 255-269. doi:10.1093/comjnl/bxm037
[6] B. Courcelle, The monadic second-order logic of graphs III: tree-decompositions, minors and complexity issues, Theor. Inform. Appl. 26 (1992) 257-286.
[7] T. Hasunuma, Completely independent spanning trees in the underlying graph of a line digraph, Discrete Math. 234 (2001) 149-157. doi:10.1016/S0012-365X(00)00377-0
[8] T. Hasunuma, Completely independent spanning trees in maximal planar graphs in: Proceedings of 28th Graph Theoretic Concepts of Computer Science (WG 2002), LNCS 2573, Springer-Verlag Berlin (2002) 235-245. doi:10.1007/3-540-36379-3 21
[9] T. Hasunuma and C. Morisaka, Completely independent spanning trees in torus networks, Networks 60 (2012) 59-69. doi:10.1002/net.20460
[10] P. Hlinĕný, S. Oum, D. Seese and G. Gottlob, Width parameters beyond tree-width and their applications, Comput. J. 51 (2008) 326-362. doi:10.1093/comjnl/bxm052
[11] F. Péterfalvi, Two counterexamples on completely independent spanning trees, Dis- crete Math. 312 (2012) 808-810. doi:10.1016/j.disc.2011.11.0