Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_3_a10, author = {Affif Chaouche, Fatima and Rutherford, Carrie G. and Whitty, Robin W.}, title = {Pancyclicity when each {Cycle} {Must} {Pass} {Exactly} k {Hamilton} {Cycle} {Chords}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {533--539}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a10/} }
TY - JOUR AU - Affif Chaouche, Fatima AU - Rutherford, Carrie G. AU - Whitty, Robin W. TI - Pancyclicity when each Cycle Must Pass Exactly k Hamilton Cycle Chords JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 533 EP - 539 VL - 35 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a10/ LA - en ID - DMGT_2015_35_3_a10 ER -
%0 Journal Article %A Affif Chaouche, Fatima %A Rutherford, Carrie G. %A Whitty, Robin W. %T Pancyclicity when each Cycle Must Pass Exactly k Hamilton Cycle Chords %J Discussiones Mathematicae. Graph Theory %D 2015 %P 533-539 %V 35 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a10/ %G en %F DMGT_2015_35_3_a10
Affif Chaouche, Fatima; Rutherford, Carrie G.; Whitty, Robin W. Pancyclicity when each Cycle Must Pass Exactly k Hamilton Cycle Chords. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 533-539. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a10/
[1] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory Ser. B 11 (1971) 80-84. doi:10.1016/0095-8956(71)90016-5
[2] J.A. Bondy, Pancyclic graphs: recent results, infinite and finite sets, in : Colloq. Math. Soc. János Bolyai, Keszthely, Hungary (1973) 181-187.
[3] H.J. Broersma, A note on the minimum size of a vertex pancyclic graph, Discrete Math. 164 (1997) 29-32. doi:10.1016/S0012-365X(96)00040-4
[4] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey and D.E. Knuth, On the Lambert W function, Adv. Comput. Math. 5 (1996) 329-359. doi:10.1007/BF02124750
[5] J.C. George, A.M. Marr and W.D. Wallis, Minimal pancyclic graphs, J. Combin. Math. Combin. Comput. 86 (2013) 125-133.
[6] S. Griffin, Minimal pancyclicity, preprint, arxiv.org/abs/1312.0274, 2013.
[7] M.R. Sridharan, On an extremal problem concerning pancyclic graphs, J. Math. Phys. Sci. 12 (1978) 297-306.