Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_3_a0, author = {Nuenay, Hearty M. and Jamil, Ferdinand P.}, title = {On {Minimal} {Geodetic} {Domination} in {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {403--418}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a0/} }
Nuenay, Hearty M.; Jamil, Ferdinand P. On Minimal Geodetic Domination in Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 403-418. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a0/
[1] S. Canoy Jr. and G. Cagaanan, On the geodesic and hull numbers of graphs, Congr. Numer. 161 (2003) 97-104.
[2] S. Canoy Jr. and G. Cagaanan, On the geodetic covers and geodetic bases of the composition G[Km], Ars Combin. 79 (2006) 33-45.
[3] G. Chartrand, F. Harary and P. Zhang, Geodetics sets in graphs, Discuss. Math. Graph Theory 20 (2000) 129-138. doi:10.7151/dmgt.1112
[4] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002) 1-6. doi:10.1002/net.10007
[5] I. Aniversario, F. Jamil and S. Canoy Jr., The closed geodetic numbers of graphs, Util. Math. 74 (2007) 3-18.
[6] S. Canoy Jr., G. Cagaanan and S. Gervacio, Convexity, geodetic and hull numbers of the join of graphs, Util. Math. 71 (2007) 143-159.
[7] S. Canoy Jr. and I.J. Garces, Convex sets under some graph operations, Graphs Combin. 18 (2002) 787-793. doi:0.1007/s003730200065
[8] H. Escuardo, R. Gera, A. Hansberg, N. Jafari Rad and L. Volkmann, Geodetic domination in graphs, J. Combin. Math. Combin. Comput. 77 (2011) 89-101.
[9] T. Haynes, S.T. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc. New York, 1998).
[10] T. Haynes, S.M. Hedetniemi, S.T. Hedetniemi and M. Henning, Domination in graphs applied to electrical power networks, SIAM J. Discrete Math. 15 (2000) 519-529. doi:10.1137/S0895480100375831
[11] F. Buckley and F. Harary, Distance in Graphs (Redwood City, CA: Addison-Wesley, 1990).
[12] M. Lemańska, Weakly convex and convex domination numbers, Opuscula Math. 24 (2004)) 181-188.
[13] J. Bondy and G. Fan, A sufficient condition for dominating cycles, Discrete Math. 67 (1987) 205-208. doi:10.1016/0012-365X(87)90029-X
[14] E. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Net- works 7 (1977) 247-261. doi:10.1002/net.3230070305
[15] H. Walikar, B. Acharya and E. Samathkumar, Recent Developments in the Theory of Domination in Graphs (Allahabad, 1979).
[16] T.L. Tacbobo, F.P.Jamil and S. Canoy Jr., Monophonic and geodetic domination in the join, corona and composition of graphs, Ars Combin. 112 (2013) 13-32.