On Minimal Geodetic Domination in Graphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 403-418

Voir la notice de l'article provenant de la source Library of Science

Let G be a connected graph. For two vertices u and v in G, a u-v geodesic is any shortest path joining u and v. The closed geodetic interval I_G[u, v] consists of all vertices of G lying on any u-v geodesic. For S ⊆ V (G), S is a geodetic set in G if ⋃_u,v ∈ S I_G [u, v] = V (G). Vertices u and v of G are neighbors if u and v are adjacent. The closed neighborhood N_G[v] of vertex v consists of v and all neighbors of v. For S ⊆ V (G), S is a dominating set in G if ⋃_u ∈ S N_G[u] = V (G). A geodetic dominating set in G is any geodetic set in G which is at the same time a dominating set in G. A geodetic dominating set in G is a minimal geodetic dominating set if it does not have a proper subset which is itself a geodetic dominating set in G. The maximum cardinality of a minimal geodetic dominating set in G is the upper geodetic domination number of G. This paper initiates the study of minimal geodetic dominating sets and upper geodetic domination numbers of connected graphs.
Keywords: minimal geodetic dominating set, upper geodetic domination number
@article{DMGT_2015_35_3_a0,
     author = {Nuenay, Hearty M. and Jamil, Ferdinand P.},
     title = {On {Minimal} {Geodetic} {Domination} in {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {403--418},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a0/}
}
TY  - JOUR
AU  - Nuenay, Hearty M.
AU  - Jamil, Ferdinand P.
TI  - On Minimal Geodetic Domination in Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 403
EP  - 418
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a0/
LA  - en
ID  - DMGT_2015_35_3_a0
ER  - 
%0 Journal Article
%A Nuenay, Hearty M.
%A Jamil, Ferdinand P.
%T On Minimal Geodetic Domination in Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 403-418
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a0/
%G en
%F DMGT_2015_35_3_a0
Nuenay, Hearty M.; Jamil, Ferdinand P. On Minimal Geodetic Domination in Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 403-418. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a0/