On Minimal Geodetic Domination in Graphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 403-418.

Voir la notice de l'article provenant de la source Library of Science

Let G be a connected graph. For two vertices u and v in G, a u-v geodesic is any shortest path joining u and v. The closed geodetic interval I_G[u, v] consists of all vertices of G lying on any u-v geodesic. For S ⊆ V (G), S is a geodetic set in G if ⋃_u,v ∈ S I_G [u, v] = V (G). Vertices u and v of G are neighbors if u and v are adjacent. The closed neighborhood N_G[v] of vertex v consists of v and all neighbors of v. For S ⊆ V (G), S is a dominating set in G if ⋃_u ∈ S N_G[u] = V (G). A geodetic dominating set in G is any geodetic set in G which is at the same time a dominating set in G. A geodetic dominating set in G is a minimal geodetic dominating set if it does not have a proper subset which is itself a geodetic dominating set in G. The maximum cardinality of a minimal geodetic dominating set in G is the upper geodetic domination number of G. This paper initiates the study of minimal geodetic dominating sets and upper geodetic domination numbers of connected graphs.
Keywords: minimal geodetic dominating set, upper geodetic domination number
@article{DMGT_2015_35_3_a0,
     author = {Nuenay, Hearty M. and Jamil, Ferdinand P.},
     title = {On {Minimal} {Geodetic} {Domination} in {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {403--418},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a0/}
}
TY  - JOUR
AU  - Nuenay, Hearty M.
AU  - Jamil, Ferdinand P.
TI  - On Minimal Geodetic Domination in Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 403
EP  - 418
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a0/
LA  - en
ID  - DMGT_2015_35_3_a0
ER  - 
%0 Journal Article
%A Nuenay, Hearty M.
%A Jamil, Ferdinand P.
%T On Minimal Geodetic Domination in Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 403-418
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a0/
%G en
%F DMGT_2015_35_3_a0
Nuenay, Hearty M.; Jamil, Ferdinand P. On Minimal Geodetic Domination in Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 403-418. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a0/

[1] S. Canoy Jr. and G. Cagaanan, On the geodesic and hull numbers of graphs, Congr. Numer. 161 (2003) 97-104.

[2] S. Canoy Jr. and G. Cagaanan, On the geodetic covers and geodetic bases of the composition G[Km], Ars Combin. 79 (2006) 33-45.

[3] G. Chartrand, F. Harary and P. Zhang, Geodetics sets in graphs, Discuss. Math. Graph Theory 20 (2000) 129-138. doi:10.7151/dmgt.1112

[4] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002) 1-6. doi:10.1002/net.10007

[5] I. Aniversario, F. Jamil and S. Canoy Jr., The closed geodetic numbers of graphs, Util. Math. 74 (2007) 3-18.

[6] S. Canoy Jr., G. Cagaanan and S. Gervacio, Convexity, geodetic and hull numbers of the join of graphs, Util. Math. 71 (2007) 143-159.

[7] S. Canoy Jr. and I.J. Garces, Convex sets under some graph operations, Graphs Combin. 18 (2002) 787-793. doi:0.1007/s003730200065

[8] H. Escuardo, R. Gera, A. Hansberg, N. Jafari Rad and L. Volkmann, Geodetic domination in graphs, J. Combin. Math. Combin. Comput. 77 (2011) 89-101.

[9] T. Haynes, S.T. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc. New York, 1998).

[10] T. Haynes, S.M. Hedetniemi, S.T. Hedetniemi and M. Henning, Domination in graphs applied to electrical power networks, SIAM J. Discrete Math. 15 (2000) 519-529. doi:10.1137/S0895480100375831

[11] F. Buckley and F. Harary, Distance in Graphs (Redwood City, CA: Addison-Wesley, 1990).

[12] M. Lemańska, Weakly convex and convex domination numbers, Opuscula Math. 24 (2004)) 181-188.

[13] J. Bondy and G. Fan, A sufficient condition for dominating cycles, Discrete Math. 67 (1987) 205-208. doi:10.1016/0012-365X(87)90029-X

[14] E. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Net- works 7 (1977) 247-261. doi:10.1002/net.3230070305

[15] H. Walikar, B. Acharya and E. Samathkumar, Recent Developments in the Theory of Domination in Graphs (Allahabad, 1979).

[16] T.L. Tacbobo, F.P.Jamil and S. Canoy Jr., Monophonic and geodetic domination in the join, corona and composition of graphs, Ars Combin. 112 (2013) 13-32.