Total Domination Multisubdivision Number of a Graph
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 315-327.

Voir la notice de l'article provenant de la source Library of Science

The domination multisubdivision number of a nonempty graph G was defined in [3] as the minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. Similarly we define the total domination multisubdivision number msdγt (G) of a graph G and we show that for any connected graph G of order at least two, msdγt (G) ≤ 3. We show that for trees the total domination multisubdivision number is equal to the known total domination subdivision number. We also determine the total domination multisubdivision number for some classes of graphs and characterize trees T with msdγt (T) = 1.
Keywords: (total) domination, (total) domination subdivision number, (total) domination multisubdivision number, trees
@article{DMGT_2015_35_2_a9,
     author = {Avella-Alaminos, Diana and Dettlaff, Magda and Lema\'nska, Magdalena and Zuazua, Rita},
     title = {Total {Domination} {Multisubdivision} {Number} of a {Graph}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {315--327},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a9/}
}
TY  - JOUR
AU  - Avella-Alaminos, Diana
AU  - Dettlaff, Magda
AU  - Lemańska, Magdalena
AU  - Zuazua, Rita
TI  - Total Domination Multisubdivision Number of a Graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 315
EP  - 327
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a9/
LA  - en
ID  - DMGT_2015_35_2_a9
ER  - 
%0 Journal Article
%A Avella-Alaminos, Diana
%A Dettlaff, Magda
%A Lemańska, Magdalena
%A Zuazua, Rita
%T Total Domination Multisubdivision Number of a Graph
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 315-327
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a9/
%G en
%F DMGT_2015_35_2_a9
Avella-Alaminos, Diana; Dettlaff, Magda; Lemańska, Magdalena; Zuazua, Rita. Total Domination Multisubdivision Number of a Graph. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 315-327. http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a9/

[1] H. Aram, S.M. Sheikholeslami and O. Favaron, Domination subdivision number of trees, Discrete Math. 309 (2009) 622-628. doi:10.1016/j.disc.2007.12.085

[2] S. Benecke and C.M. Mynhardt, Trees with domination subdivision number one, Australas. J. Combin. 42 (2008) 201-209.

[3] M. Dettlaff, J. Raczek and J. Topp, Domination subdivision and multisubdivision numbers of graphs, submitted.

[4] O. Favaron, H. Karami and S.M. Sheikholeslami, Disproof of a conjecture on the subdivision domination number of a graph, Graphs Combin. 24 (2008) 309-312. doi:10.1007/s00373-008-0788-6

[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998).

[6] T.W. Haynes, S.T. Hedetniemi and L.C. van der Merwe, Total domination subdivi- sion numbers, J. Combin. Math. Combin. Comput. 44 (2003) 115-128.

[7] T.W. Haynes, M.A. Henning and L.S. Hopkins, Total domination subdivision num- bers of graphs, Discuss. Math. Graph Theory 24 (2004) 457-467. doi:10.7151/dmgt.1244

[8] T.W. Haynes, M.A. Henning and L.S. Hopkins, Total domination subdivision num- bers of trees, Discrete Math. 286 (2004) 195-202. doi:10.1016/j.disc.2004.06.004

[9] H. Karami, A. Khodkar, R. Khoeilar and S.M. Sheikholeslami, Trees whose total domination subdivision number is one, Bull. Inst. Combin. Appl. 53 (2008) 56-57.

[10] S. Velammal, Studies in Graph Theory: Covering, Independence, Domination and Related Topics, Ph.D. Thesis (Manonmaniam Sundaranar University, Tirunelveli, 1997).