Characterizing which Powers of Hypercubes and Folded Hypercubes Are Divisor Graphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 301-311

Voir la notice de l'article provenant de la source Library of Science

In this paper, we show that Q_n^k is a divisor graph, for n = 2, 3. For n ≥ 4, we show that Q_n^k is a divisor graph iff k ≥ n − 1. For folded-hypercube, we get FQ_n is a divisor graph when n is odd. But, if n ≥ 4 is even integer, then FQ_n is not a divisor graph. For n ≥ 5, we show that (FQ_n)^k is not a divisor graph, where 2 ≤ k ≤ [n/2] − 1.
Keywords: hypercube, folded-hypercube, divisor graph, power of a graph
@article{DMGT_2015_35_2_a8,
     author = {AbuHijleh, Eman A. and AbuGhneim, Omar A. and Al-Ezeh, Hasan},
     title = {Characterizing which {Powers} of {Hypercubes} and {Folded} {Hypercubes} {Are} {Divisor} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {301--311},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a8/}
}
TY  - JOUR
AU  - AbuHijleh, Eman A.
AU  - AbuGhneim, Omar A.
AU  - Al-Ezeh, Hasan
TI  - Characterizing which Powers of Hypercubes and Folded Hypercubes Are Divisor Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 301
EP  - 311
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a8/
LA  - en
ID  - DMGT_2015_35_2_a8
ER  - 
%0 Journal Article
%A AbuHijleh, Eman A.
%A AbuGhneim, Omar A.
%A Al-Ezeh, Hasan
%T Characterizing which Powers of Hypercubes and Folded Hypercubes Are Divisor Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 301-311
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a8/
%G en
%F DMGT_2015_35_2_a8
AbuHijleh, Eman A.; AbuGhneim, Omar A.; Al-Ezeh, Hasan. Characterizing which Powers of Hypercubes and Folded Hypercubes Are Divisor Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 301-311. http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a8/