Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_2_a8, author = {AbuHijleh, Eman A. and AbuGhneim, Omar A. and Al-Ezeh, Hasan}, title = {Characterizing which {Powers} of {Hypercubes} and {Folded} {Hypercubes} {Are} {Divisor} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {301--311}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a8/} }
TY - JOUR AU - AbuHijleh, Eman A. AU - AbuGhneim, Omar A. AU - Al-Ezeh, Hasan TI - Characterizing which Powers of Hypercubes and Folded Hypercubes Are Divisor Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 301 EP - 311 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a8/ LA - en ID - DMGT_2015_35_2_a8 ER -
%0 Journal Article %A AbuHijleh, Eman A. %A AbuGhneim, Omar A. %A Al-Ezeh, Hasan %T Characterizing which Powers of Hypercubes and Folded Hypercubes Are Divisor Graphs %J Discussiones Mathematicae. Graph Theory %D 2015 %P 301-311 %V 35 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a8/ %G en %F DMGT_2015_35_2_a8
AbuHijleh, Eman A.; AbuGhneim, Omar A.; Al-Ezeh, Hasan. Characterizing which Powers of Hypercubes and Folded Hypercubes Are Divisor Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 301-311. http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a8/
[1] E.A. AbuHijleh, O.A. AbuGhneim and H. Al-Ezeh, Characterizing when powers of a caterpillar are divisor graphs, Ars Combin. 113 (2014) 85-95.
[2] S. Aladdasi, O.A. AbuGhneim and H. Al-Ezeh, Divisor orientations of powers of paths and powers of cycles, Ars Combin. 94 (2010) 371-380.
[3] S. Aladdasi, O.A. AbuGhneim and H. Al-Ezeh, Characterizing powers of cycles that are divisor graphs, Ars Combin. 97 (2010) 447-451.
[4] S. Al-Addasi, O.A. AbuGhneim and H. Al-Ezeh, Merger and vertex splitting in divisor graphs, Int. Math. Forum 5 (2010) 1861-1869.
[5] S. Aladdasi, O.A. AbuGhneim and H. Al-Ezeh, Further new properties of divisor graphs, J. Combin. Math. Combin. Comput. 81 (2012) 261-272.
[6] G. Agnarsson, R. Greenlaw, Graph Theory: Modeling Applications and Algorithms (Pearson, NJ, USA, 2007).
[7] G. Chartrand, R. Muntean, V. Seanpholphat and P. Zang, Which graphs are divisor graphs, Congr. Numer. 151 (2001) 180-200.
[8] P. Erdős, R. Frued and N. Hegyvári, Arithmetical properties of permutations of integers, Acta Math. Hungar. 41 (1983) 169-176. doi:10.1007/BF01994075
[9] S.Y. Hsieh, C.N. Kuo, Hamiltonian-connectivity and strongly Hamiltonian-laceability of folded hypercubes, Comput. Math. Appl. 53 (2006) 1040-1044. doi:10.1016/j.camwa.2006.10.033
[10] M. Kobeissi, M. Mollard, Disjoint cycles and spanning graphs of hypercubes, Discrete Math. 288 (2004) 73-87. doi:10.1016/j.disc.2004.08.005
[11] O. Melnikov, V. Sarvanov, R. Tyshkevich, V. Yemelichev and I. Zverovich, Exercises in Graph Theory (Netherlands, Kluwer Academic Publishers, 1998). doi:10.1007/978-94-017-1514-0
[12] A.D. Pollington, There is a long path in the divisor graph, Ars Combin. 16-B (1983) 303-304.
[13] C. Pomerance, On the longest simple path in the divisor graph, Congr. Numer. 40 (1983) 291-304.
[14] G.S. Singh, G. Santhosh, Divisor graph-I, preprint.