Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_2_a3, author = {Escuadro, Henry E. and Fujie, Futaba and Musick, Chad E.}, title = {A {Note} on the {Total} {Detection} {Numbers} of {Cycles}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {237--247}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a3/} }
TY - JOUR AU - Escuadro, Henry E. AU - Fujie, Futaba AU - Musick, Chad E. TI - A Note on the Total Detection Numbers of Cycles JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 237 EP - 247 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a3/ LA - en ID - DMGT_2015_35_2_a3 ER -
Escuadro, Henry E.; Fujie, Futaba; Musick, Chad E. A Note on the Total Detection Numbers of Cycles. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 237-247. http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a3/
[1] M. Aigner and E. Triesch, Irregular assignments and two problems à la Ringel, in: Topics in Combinatorics and Graph Theory, R. Bodendiek and R. Henn (Ed(s)), (Heidelberg: Physica, 1990) 29-36.
[2] M. Aigner, E. Triesch and Zs. Tuza, Irregular assignments and vertex-distinguishing edge-colorings of graphs, in: Combinatorics ’90, (New York: Elsevier Science Pub., 1992) 1-9.
[3] A.C. Burris, On graphs with irregular coloring number 2, Congr. Numer. 100 (1994) 129-140.
[4] A.C. Burris, The irregular coloring number of a tree, Discrete Math. 141 (1995) 279-283. doi:10.1016/0012-365X(93)E0225-S
[5] G. Chartrand, H. Escuadro, F. Okamoto and P. Zhang, Detectable colorings of graphs, Util. Math. 69 (2006) 13-32.
[6] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs (CRC Press, Boca Raton, FL, 2010).
[7] H. Escuadro, F. Fujie and C.E. Musick, On the total detection numbers of complete bipartite graphs, Discrete Math. 313 (2013) 2908-2917. doi:10.1016/j.disc.2013.09.001
[8] H. Escuadro and F. Fujie-Okamoto, The total detection numbers of graphs, J. Com- bin. Math. Combin. Comput. 81 (2012) 97-119.