Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_2_a14, author = {Li, Xueliang and Schiermeyer, Ingo and Yang, Kang and Zhao, Yan}, title = {Graphs with {4-Rainbow} {Index} 3 and n \ensuremath{-} 1}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {387--398}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a14/} }
TY - JOUR AU - Li, Xueliang AU - Schiermeyer, Ingo AU - Yang, Kang AU - Zhao, Yan TI - Graphs with 4-Rainbow Index 3 and n − 1 JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 387 EP - 398 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a14/ LA - en ID - DMGT_2015_35_2_a14 ER -
Li, Xueliang; Schiermeyer, Ingo; Yang, Kang; Zhao, Yan. Graphs with 4-Rainbow Index 3 and n − 1. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 387-398. http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a14/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory (GTM 244, Springer, 2008).
[2] Q. Cai, X. Li and J. Song, Solutions to conjectures on the (k, ℓ)-rainbow index of complete graphs, Networks 62 (2013) 220-224. doi:10.1002/net.21513
[3] Y. Caro, A. Lev, Y. Roditty, Zs. Tuza and R. Yuster, On rainbow connection, Electron. J. Combin. 15 (2008) R57.
[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[5] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, The rainbow connectivity of a graph, Networks 54 (2009) 75-81. doi:10.1002/net.20296
[6] G. Chartrand, S.F. Kappor, L. Lesniak and D.R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq 2 (1984) 1-6.
[7] G. Chartrand, F. Okamoto and P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (2010) 360-367. doi:10.1002/net.20399
[8] L. Chen, X. Li, K. Yang and Y. Zhao, The 3-rainbow index of a graph, Discuss. Math. Graph Theory 35 (2015) 81-94. doi:10.7151/dmgt.1780
[9] P. Erdős and A. Gyárfás, A variant of the classical Ramsey problem, Combinatorica 17 (1997) 459-467. doi:10.1007/BF01195000
[10] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer Briefs in Math., Springer, New York, 2012).
[11] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1-38. doi:10.1007/s00373-012-1243-2
[12] X. Li, I. Schiermeyer, K. Yang and Y. Zhao, Graphs with 3-rainbow index n−1 and n − 2, Discuss. Math. Graph Theory 35 (2015) 105-120. doi:10.7151/dmgt.1783