Eigenvalue Conditions for Induced Subgraphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 355-363.

Voir la notice de l'article provenant de la source Library of Science

Necessary conditions for an undirected graph G to contain a graph H as induced subgraph involving the smallest ordinary or the largest normalized Laplacian eigenvalue of G are presented.
Keywords: induced subgraph, eigenvalue
@article{DMGT_2015_35_2_a12,
     author = {Harant, Jochen and Niebling, Julia and Richter, Sebastian},
     title = {Eigenvalue {Conditions} for {Induced} {Subgraphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {355--363},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a12/}
}
TY  - JOUR
AU  - Harant, Jochen
AU  - Niebling, Julia
AU  - Richter, Sebastian
TI  - Eigenvalue Conditions for Induced Subgraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 355
EP  - 363
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a12/
LA  - en
ID  - DMGT_2015_35_2_a12
ER  - 
%0 Journal Article
%A Harant, Jochen
%A Niebling, Julia
%A Richter, Sebastian
%T Eigenvalue Conditions for Induced Subgraphs
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 355-363
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a12/
%G en
%F DMGT_2015_35_2_a12
Harant, Jochen; Niebling, Julia; Richter, Sebastian. Eigenvalue Conditions for Induced Subgraphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 355-363. http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a12/

[1] W.N. Anderson Jr. and T.D. Morley, Eigenvalues of the Laplacian of a graph, Linear Multilinear Algebra 18 (1985) 141-145. doi:10.1080/03081088508817681

[2] D.P. Bertsekas, Nonlinear Programming: Second Edition (Athena Scientific, Belmont, Massachusetts 1999) page 278, Proposition 3.1.1.

[3] B. Bollobas and V. Nikiforov, Graphs and Hermitian matrices: eigenvalue interlac- ing, Discrete Math. 289 (2004) 119-127. doi:10.1016/j.disc.2004.07.011

[4] A.E. Brouwer and W.H. Haemers, Spectra of Graphs (Springer Verlag, 2011).

[5] S. Butler, Interlacing for weighted graphs using the normalized Laplacian, Electron. J. Linear Algebra 16 (2007) 90-98.

[6] F.R.K. Chung, Laplacian of graphs and Cheeger’s inequalities, in: Combinatorics, Paul Erdős is Eighty, Janos Bolyai Math. Soc., Budapest Vol. 2, 1996, 157-172.

[7] D.M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs: Theory and Applications (Johann Abrosius Barth Verlag, Heidelberg-Leipzig, 1995).

[8] R. Diestel, Graph Theory (Springer, Graduate Texts in Mathematics, 173, 2000).

[9] W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 1995 (227-228) 593-616. doi:10.1016/0024-3795(95)00199-2

[10] F.J. Hall, The Adjacency Matrix, Standard Laplacian, and Normalized Laplacian, and Some Eigenvalue Interlacing Results, Department of Mathematics and Statistics Georgia State University Atlanta, GA 30303. http://www2.cs.cas.cz/semincm/lectures/2010-04-13-Hall.pdf

[11] J. Harant and S. Richter, A new eigenvalue bound for independent sets, Discrete Math. accepted. http://www.tu-chemnitz.de/mathematik/preprint/2014/PREPRINT_08.pdf.

[12] V.S. Shigehalli and V.M. Shettar, Spectral techniques using normalized adjacency matrices for graph matching, Int. J. Comput. Sci. Math. 2 (2011) 371-378.

[13] Xiao-Dong Zhang, The Laplacian eigenvalues of graphs: a survey. arXiv:1111.2897v1 [math.CO] 12Nov2011

[14] R. Zurmuhl, Matrizen (Springer 1950) 152-158. doi:10.1007/978-3-642-53289-4_16