Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_2_a11, author = {Dod, Markus and Kotek, Tomer and Preen, James and Tittmann, Peter}, title = {Bipartition {Polynomials,} the {Ising} {Model,} and {Domination} in {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {335--353}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a11/} }
TY - JOUR AU - Dod, Markus AU - Kotek, Tomer AU - Preen, James AU - Tittmann, Peter TI - Bipartition Polynomials, the Ising Model, and Domination in Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 335 EP - 353 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a11/ LA - en ID - DMGT_2015_35_2_a11 ER -
%0 Journal Article %A Dod, Markus %A Kotek, Tomer %A Preen, James %A Tittmann, Peter %T Bipartition Polynomials, the Ising Model, and Domination in Graphs %J Discussiones Mathematicae. Graph Theory %D 2015 %P 335-353 %V 35 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a11/ %G en %F DMGT_2015_35_2_a11
Dod, Markus; Kotek, Tomer; Preen, James; Tittmann, Peter. Bipartition Polynomials, the Ising Model, and Domination in Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 335-353. http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a11/
[1] W. Ahrens, Mathematische Unterhaltungen und Spiele (B.G. Teubner, Leipzig, Berlin, 1921).
[2] M. Aigner, A Course in Enumeration (Springer, Heidelberg, 2007).
[3] D. Andrén and K. Markström, The bivariate Ising polynomial of a graph, Discrete Appl. Math. 157 (2009) 2515-2524. doi:810.1016/j.dam.2009.02.021
[4] J.L. Arocha, Propiedades del polinomio independiente de un grafo, Ciencias Matemăticas 5 (1984) 103-110.
[5] J.L. Arocha and B. Llano, Meanvalue for the matching and dominating polynomial, Discuss. Math. Graph Theory 20 (2000) 57-69. doi:10.7151/dmgt.1106
[6] A.E. Brouwer, The number of dominating sets of a finite graph is odd, preprint, (2009). http://www.win.tue.nl/˜aeb/preprints/domin2.pdf.
[7] K. Dohmen and P. Tittmann, Domination reliability, Electron. J. Combin. 19(1) (2012) #15.
[8] J.A. Ellis-Monaghan and I. Moffatt, The Tutte-Potts connection in the presence of an external magnetic field, Adv. Appl. Math. 47 (2011) 772-782. doi:10.1016/j.aam.2011.02.004
[9] D. Garijo, A. Goodall and J. Nešetril, Distinguishing graphs by their left and right homomorphism profiles, European J. Combin. 32 (2011) 1025-1053. doi:10.1016/j.ejc.2011.03.012
[10] C. Godsil and I. Gutman, On the theory of the matching polynomial, J. Graph Theory 5 (1981) 137-144. doi:10.1002/jgt.3190050203
[11] C. Godsil and G. Royle, Algebraic Graph Theory (Springer, 2001). doi:10.1007/978-1-4613-0163-9
[12] I. Gutman and F. Harary, Generalizations of the matching polynomial, Util. Math. 24 (1983) 97-106.
[13] O.J. Heilmann and E.H. Lieb, Theory of monomer-dimer systems, Commun. Math. Phys. 25 (1972) 190-232. doi:10.1007/BF01877590
[14] C. Hoede and X.-L. Li, Clique polynomials and independent set polynomials of graphs, Discrete Math. 125 (1994) 219-228. 10.1016/0012-365X(94)90163-5
[15] T. Kotek, Complexity of Ising polynomials, Combin. Probab. Comput. 21 (2012) 743-772. doi:10.1017/S0963548312000259
[16] T. Kotek, J. Preen and P. Tittmann, Subset-sum representations of domination polynomials, Graphs Combin. 30 (2014) 647-660. doi:10.1007/s00373-013-1286-z
[17] T. Kotek, J. Preen and P. Tittmann: Domination polynomials of graph products, submitted.
[18] K. Markström, The general graph homomorphism polynomial: Its relationship with other graph polynomials and partition functions, arXiv preprint arXiv:1401.6335 (2014).
[19] B. Mohar, Graph laplacians, in: Topics in Algebraic Graph Theory, L.W. Beineke and R.J. Wilson (Eds.), Cambridge University Press (2004) 113-136.
[20] A.D. Scott and G.B. Sorkin, Polynomial constraint satisfaction problems, graph bisection, and the Ising partition function, ACM Transactions on Algorithms (TALG) 5 (2009) 4. doi:10.1145/1597036.1597049
[21] W.T. Tutte, A contribution to the theory of chromatic polynomials, Canadian J. Math. 6 (1954) 80-91. doi:10.4153/CJM-1954-010-9
[22] J.M.M. van Rooij, Polynomial space algorithms for counting dominating sets and the domatic number, in: CIAC 2010, LNCS 6078, T. Calamoneri and J. Diaz (Eds.)(2010) 73-84.