Graphs with 3-Rainbow Index n − 1 and n − 2
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 105-120.

Voir la notice de l'article provenant de la source Library of Science

Let G = (V(G),E(G)) be a nontrivial connected graph of order n with an edge-coloring c : E(G) → 1, 2, . . ., q, q ∈ ℕ, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V (G), a tree connecting S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for each k-subset S of V(G) is called the k-rainbow index of G, denoted by rx_k(G), where k is an integer such that 2 ≤ k ≤ n. Chartrand et al. got that the k-rainbow index of a tree is n−1 and the k-rainbow index of a unicyclic graph is n−1 or n−2. So there is an intriguing problem: Characterize graphs with the k-rainbow index n − 1 and n − 2. In this paper, we focus on k = 3, and characterize the graphs whose 3-rainbow index is n − 1 and n − 2, respectively.
Keywords: rainbow S-tree, k-rainbow index
@article{DMGT_2015_35_1_a8,
     author = {Li, Xueliang and Schiermeyer, Ingo and Yang, Kang and Zhao, Yan},
     title = {Graphs with {3-Rainbow} {Index} \protect\emph{n} \ensuremath{-} 1 and \protect\emph{n} \ensuremath{-} 2},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {105--120},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a8/}
}
TY  - JOUR
AU  - Li, Xueliang
AU  - Schiermeyer, Ingo
AU  - Yang, Kang
AU  - Zhao, Yan
TI  - Graphs with 3-Rainbow Index n − 1 and n − 2
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 105
EP  - 120
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a8/
LA  - en
ID  - DMGT_2015_35_1_a8
ER  - 
%0 Journal Article
%A Li, Xueliang
%A Schiermeyer, Ingo
%A Yang, Kang
%A Zhao, Yan
%T Graphs with 3-Rainbow Index n − 1 and n − 2
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 105-120
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a8/
%G en
%F DMGT_2015_35_1_a8
Li, Xueliang; Schiermeyer, Ingo; Yang, Kang; Zhao, Yan. Graphs with 3-Rainbow Index n − 1 and n − 2. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 105-120. http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a8/

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (GTM 244, Springer, 2008).

[2] G. Chartrand, G. Johns, K. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.

[3] G. Chartrand, F. Okamoto and P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (2010) 360-367. doi:10.1002/net.20339

[4] L. Chen, X. Li, K. Yang and Y. Zhao, The 3-rainbow index of a graph, Discuss. Math. Graph Theory 35 (2015) 81-94. doi:10.7151/dmgt.1780

[5] Y. Caro, A. Lev, Y. Roditty, Zs. Tuza and R. Yuster, On rainbow connection, Electron. J. Combin. 15 (2008) #R57.

[6] G. Chartrand, S. Kappor, L. Lesniak and D. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2 (1984) 1-6.

[7] G. Chartrand, G. Johns, K. McKeon and P. Zhang, The rainbow connectivity of a graph, Networks 54 (2009) 75-81. doi:10.1002/net.20296

[8] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1-38. doi:10.1007/s00373-012-1243-2

[9] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer Briefs in Math., Springer, 2012).